Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

JCI Insight’s 2018 Impact Factor

JCI Insight’s 2018 Impact Factor, the first for the journal, is 6.014. We thank the journal’s community of authors, reviewers, editors, and readers who contributed to the journal’s success since its launch in 2016. More information on the Impact Factor

Several highly cited articles that contributed to the Impact Factor are listed below.

Published June 23, 2019, by JCI Insight staff

Related articles

Institutional implementation of clinical tumor profiling on an unselected cancer population
Lynette M. Sholl, … , Neal I. Lindeman, Laura E. MacConaill
Lynette M. Sholl, … , Neal I. Lindeman, Laura E. MacConaill
Published November 17, 2016
Citation Information: JCI Insight. 2016;1(19):e87062. https://doi.org/10.1172/jci.insight.87062.
View: Text | PDF
Clinical Research and Public Health Genetics Oncology Article has an altmetric score of 58

Institutional implementation of clinical tumor profiling on an unselected cancer population

  • Text
  • PDF
Abstract

BACKGROUND. Comprehensive genomic profiling of a patient’s cancer can be used to diagnose, monitor, and recommend treatment. Clinical implementation of tumor profiling in an enterprise-wide, unselected cancer patient population has yet to be reported.

METHODS. We deployed a hybrid-capture and massively parallel sequencing assay (OncoPanel) for all adult and pediatric patients at our combined cancer centers. Results were categorized by pathologists based on actionability. We report the results for the first 3,727 patients tested.

RESULTS. Our cohort consists of cancer patients unrestricted by disease site or stage. Across all consented patients, half had sufficient and available (>20% tumor) material for profiling; once specimens were received in the laboratory for pathology review, 73% were scored as adequate for genomic testing. When sufficient DNA was obtained, OncoPanel yielded a result in 96% of cases. 73% of patients harbored an actionable or informative alteration; only 19% of these represented a current standard of care for therapeutic stratification. The findings recapitulate those of previous studies of common cancers but also identify alterations, including in AXL and EGFR, associated with response to targeted therapies. In rare cancers, potentially actionable alterations suggest the utility of a “cancer-agnostic” approach in genomic profiling. Retrospective analyses uncovered contextual genomic features that may inform therapeutic response and examples where diagnoses revised by genomic profiling markedly changed clinical management.

CONCLUSIONS. Broad sequencing-based testing deployed across an unselected cancer cohort is feasible. Genomic results may alter management in diverse scenarios; however, additional barriers must be overcome to enable precision cancer medicine on a large scale.

FUNDING. This work was supported by DFCI, BWH, and the National Cancer Institute (5R33CA155554 and 5K23CA157631).

Authors

Lynette M. Sholl, Khanh Do, Priyanka Shivdasani, Ethan Cerami, Adrian M. Dubuc, Frank C. Kuo, Elizabeth P. Garcia, Yonghui Jia, Phani Davineni, Ryan P. Abo, Trevor J. Pugh, Paul van Hummelen, Aaron R. Thorner, Matthew Ducar, Alice H. Berger, Mizuki Nishino, Katherine A. Janeway, Alanna Church, Marian Harris, Lauren L. Ritterhouse, Joshua D. Campbell, Vanesa Rojas-Rudilla, Azra H. Ligon, Shakti Ramkissoon, James M. Cleary, Ursula Matulonis, Geoffrey R. Oxnard, Richard Chao, Vanessa Tassell, James Christensen, William C. Hahn, Philip W. Kantoff, David J. Kwiatkowski, Bruce E. Johnson, Matthew Meyerson, Levi A. Garraway, Geoffrey I. Shapiro, Barrett J. Rollins, Neal I. Lindeman, Laura E. MacConaill

×

Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis
Yan Xu, … , Barry R. Stripp, Jeffrey A. Whitsett
Yan Xu, … , Barry R. Stripp, Jeffrey A. Whitsett
Published December 8, 2016
Citation Information: JCI Insight. 2016;1(20):e90558. https://doi.org/10.1172/jci.insight.90558.
View: Text | PDF
Research Article Inflammation Article has an altmetric score of 127

Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis

  • Text
  • PDF
Abstract

Idiopathic pulmonary fibrosis (IPF) is a lethal interstitial lung disease characterized by airway remodeling, inflammation, alveolar destruction, and fibrosis. We utilized single-cell RNA sequencing (scRNA-seq) to identify epithelial cell types and associated biological processes involved in the pathogenesis of IPF. Transcriptomic analysis of normal human lung epithelial cells defined gene expression patterns associated with highly differentiated alveolar type 2 (AT2) cells, indicated by enrichment of RNAs critical for surfactant homeostasis. In contrast, scRNA-seq of IPF cells identified 3 distinct subsets of epithelial cell types with characteristics of conducting airway basal and goblet cells and an additional atypical transitional cell that contributes to pathological processes in IPF. Individual IPF cells frequently coexpressed alveolar type 1 (AT1), AT2, and conducting airway selective markers, demonstrating “indeterminate” states of differentiation not seen in normal lung development. Pathway analysis predicted aberrant activation of canonical signaling via TGF-β, HIPPO/YAP, P53, WNT, and AKT/PI3K. Immunofluorescence confocal microscopy identified the disruption of alveolar structure and loss of the normal proximal-peripheral differentiation of pulmonary epithelial cells. scRNA-seq analyses identified loss of normal epithelial cell identities and unique contributions of epithelial cells to the pathogenesis of IPF. The present study provides a rich data source to further explore lung health and disease.

Authors

Yan Xu, Takako Mizuno, Anusha Sridharan, Yina Du, Minzhe Guo, Jie Tang, Kathryn A. Wikenheiser-Brokamp, Anne-Karina T. Perl, Vincent A. Funari, Jason J. Gokey, Barry R. Stripp, Jeffrey A. Whitsett

×

Oral ruxolitinib induces hair regrowth in patients with moderate-to-severe alopecia areata
Julian Mackay-Wiggan, … , Angela M. Christiano, Raphael Clynes
Julian Mackay-Wiggan, … , Angela M. Christiano, Raphael Clynes
Published September 22, 2016
Citation Information: JCI Insight. 2016;1(15):e89790. https://doi.org/10.1172/jci.insight.89790.
View: Text | PDF
Clinical Research and Public Health Dermatology Article has an altmetric score of 215

Oral ruxolitinib induces hair regrowth in patients with moderate-to-severe alopecia areata

  • Text
  • PDF
Abstract

BACKGROUND. Alopecia areata (AA) is a common autoimmune disease with a lifetime risk of 1.7%; there are no FDA-approved treatments for AA. We previously identified a dominant IFN-γ transcriptional signature in cytotoxic T lymphocytes (CTLs) in human and mouse AA skin and showed that treatment with JAK inhibitors induced durable hair regrowth in mice by targeting this pathway. Here, we investigated the use of the oral JAK1/2 inhibitor ruxolitinib in the treatment of patients with moderate-to-severe AA.

METHODS. We initiated an open-label clinical trial of 12 patients with moderate-to-severe AA, using oral ruxolitinib, 20 mg twice per day, for 3–6 months of treatment followed by 3 months follow-up off drug. The primary endpoint was the proportion of subjects with 50% or greater hair regrowth from baseline to end of treatment.

RESULTS. Nine of twelve patients (75%) demonstrated a remarkable response to treatment, with average hair regrowth of 92% at the end of treatment. Safety parameters remained largely within normal limits, and no serious adverse effects were reported. Gene expression profiling revealed treatment-related downregulation of inflammatory markers, including signatures for CTLs and IFN response genes and upregulation of hair-specific markers.

CONCLUSION. In this pilot study, 9 of 12 patients (75%) treated with ruxolitinib showed significant scalp hair regrowth and improvement of AA. Larger randomized controlled trials are needed to further assess the safety and efficacy of ruxolitinib in the treatment of AA.

TRIAL REGISTRATION. Clinicaltrials.gov NCT01950780.

FUNDING. Locks of Love Foundation, the Alopecia Areata Initiative, NIH/National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), and the Irving Institute for Clinical and Translational Research/Columbia University Medical Center Clinical and Translational Science Award (CUMC CTSA).

Authors

Julian Mackay-Wiggan, Ali Jabbari, Nhan Nguyen, Jane E. Cerise, Charlotte Clark, Grace Ulerio, Megan Furniss, Roger Vaughan, Angela M. Christiano, Raphael Clynes

×

Inhibition of neuronal ferroptosis protects hemorrhagic brain
Qian Li, … , Brent R. Stockwell, Jian Wang
Qian Li, … , Brent R. Stockwell, Jian Wang
Published April 6, 2017
Citation Information: JCI Insight. 2017;2(7):e90777. https://doi.org/10.1172/jci.insight.90777.
View: Text | PDF
Research Article Neuroscience Article has an altmetric score of 16

Inhibition of neuronal ferroptosis protects hemorrhagic brain

  • Text
  • PDF
Abstract

Intracerebral hemorrhage (ICH) causes high mortality and morbidity, but our knowledge of post-ICH neuronal death and related mechanisms is limited. In this study, we first demonstrated that ferroptosis, a newly identified form of cell death, occurs in the collagenase-induced ICH model in mice. We found that administration of ferrostatin-1, a specific inhibitor of ferroptosis, prevented neuronal death and reduced iron deposition induced by hemoglobin in organotypic hippocampal slice cultures (OHSCs). Mice treated with ferrostatin-1 after ICH exhibited marked brain protection and improved neurologic function. Additionally, we found that ferrostatin-1 reduced lipid reactive oxygen species production and attenuated the increased expression level of PTGS2 and its gene product cyclooxygenase-2 ex vivo and in vivo. Moreover, ferrostatin-1 in combination with other inhibitors that target different forms of cell death prevented hemoglobin-induced cell death in OHSCs and human induced pluripotent stem cell–derived neurons better than any inhibitor alone. These results indicate that ferroptosis contributes to neuronal death after ICH, that administration of ferrostatin-1 protects hemorrhagic brain, and that cyclooxygenase-2 could be a biomarker of ferroptosis. The insights gained from this study will advance our knowledge of the post-ICH cell death cascade and be essential for future preclinical studies.

Authors

Qian Li, Xiaoning Han, Xi Lan, Yufeng Gao, Jieru Wan, Frederick Durham, Tian Cheng, Jie Yang, Zhongyu Wang, Chao Jiang, Mingyao Ying, Raymond C. Koehler, Brent R. Stockwell, Jian Wang

×

Telomere dysfunction in alveolar epithelial cells causes lung remodeling and fibrosis
Ram P. Naikawadi, … , Mark R. Looney, Paul J. Wolters
Ram P. Naikawadi, … , Mark R. Looney, Paul J. Wolters
Published September 8, 2016
Citation Information: JCI Insight. 2016;1(14):e86704. https://doi.org/10.1172/jci.insight.86704.
View: Text | PDF
Resource and Technical Advance Pulmonology Article has an altmetric score of 15

Telomere dysfunction in alveolar epithelial cells causes lung remodeling and fibrosis

  • Text
  • PDF
Abstract

Telomeres are short in type II alveolar epithelial cells (AECs) of patients with idiopathic pulmonary fibrosis (IPF). Whether dysfunctional telomeres contribute directly to development of lung fibrosis remains unknown. The objective of this study was to investigate whether telomere dysfunction in type II AECs, mediated by deletion of the telomere shelterin protein TRF1, leads to pulmonary fibrosis in mice (SPC-Cre TRF1fl/fl mice). Deletion of TRF1 in type II AECs for 2 weeks increased γH2AX DNA damage foci, but not histopathologic changes in the lung. Deletion of TRF1 in type II AECs for up to 9 months resulted in short telomeres and lung remodeling characterized by increased numbers of type II AECs, α-smooth muscle actin+ mesenchymal cells, collagen deposition, and accumulation of senescence-associated β-galactosidase+ lung epithelial cells. Deletion of TRF1 in collagen-expressing cells caused pulmonary edema, but not fibrosis. These results demonstrate that prolonged telomere dysfunction in type II AECs, but not collagen-expressing cells, leads to age-dependent lung remodeling and fibrosis. We conclude that telomere dysfunction in type II AECs is sufficient to cause lung fibrosis, and may be a dominant molecular defect causing IPF. SPC-Cre TRF1fl/fl mice will be useful for assessing cellular and molecular mechanisms of lung fibrosis mediated by telomere dysfunction.

Authors

Ram P. Naikawadi, Supparerk Disayabutr, Benat Mallavia, Matthew L. Donne, Gary Green, Janet L. La, Jason R. Rock, Mark R. Looney, Paul J. Wolters

×
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts

Blogged by 2
Posted by 6 X users
On 1 Facebook pages
129 readers on Mendeley
See more details
Picked up by 25 news outlets
Blogged by 2
Posted by 12 X users
Referenced in 3 patents
On 3 Facebook pages
Referenced in 7 Wikipedia pages
Mentioned in 1 Google+ posts
Highlighted by 1 platforms
162 readers on Mendeley
See more details
Picked up by 13 news outlets
Blogged by 3
Posted by 22 X users
Referenced in 4 patents
On 4 Facebook pages
Highlighted by 1 platforms
Referenced in 1 clinical guideline sources
382 readers on Mendeley
See more details
Picked up by 8 news outlets
Referenced in 1 policy sources
Posted by 3 X users
133 readers on Mendeley
See more details
Picked up by 1 news outlets
Posted by 4 X users
Referenced in 2 Wikipedia pages
Highlighted by 1 platforms
223 readers on Mendeley
See more details