JCI Insight’s 2018 Impact Factor, the first for the journal, is 6.014. We thank the journal’s community of authors, reviewers, editors, and readers who contributed to the journal’s success since its launch in 2016. More information on the Impact Factor
Several highly cited articles that contributed to the Impact Factor are listed below.
Lynette M. Sholl, Khanh Do, Priyanka Shivdasani, Ethan Cerami, Adrian M. Dubuc, Frank C. Kuo, Elizabeth P. Garcia, Yonghui Jia, Phani Davineni, Ryan P. Abo, Trevor J. Pugh, Paul van Hummelen, Aaron R. Thorner, Matthew Ducar, Alice H. Berger, Mizuki Nishino, Katherine A. Janeway, Alanna Church, Marian Harris, Lauren L. Ritterhouse, Joshua D. Campbell, Vanesa Rojas-Rudilla, Azra H. Ligon, Shakti Ramkissoon, James M. Cleary, Ursula Matulonis, Geoffrey R. Oxnard, Richard Chao, Vanessa Tassell, James Christensen, William C. Hahn, Philip W. Kantoff, David J. Kwiatkowski, Bruce E. Johnson, Matthew Meyerson, Levi A. Garraway, Geoffrey I. Shapiro, Barrett J. Rollins, Neal I. Lindeman, Laura E. MacConaill
Idiopathic pulmonary fibrosis (IPF) is a lethal interstitial lung disease characterized by airway remodeling, inflammation, alveolar destruction, and fibrosis. We utilized single-cell RNA sequencing (scRNA-seq) to identify epithelial cell types and associated biological processes involved in the pathogenesis of IPF. Transcriptomic analysis of normal human lung epithelial cells defined gene expression patterns associated with highly differentiated alveolar type 2 (AT2) cells, indicated by enrichment of RNAs critical for surfactant homeostasis. In contrast, scRNA-seq of IPF cells identified 3 distinct subsets of epithelial cell types with characteristics of conducting airway basal and goblet cells and an additional atypical transitional cell that contributes to pathological processes in IPF. Individual IPF cells frequently coexpressed alveolar type 1 (AT1), AT2, and conducting airway selective markers, demonstrating “indeterminate” states of differentiation not seen in normal lung development. Pathway analysis predicted aberrant activation of canonical signaling via TGF-β, HIPPO/YAP, P53, WNT, and AKT/PI3K. Immunofluorescence confocal microscopy identified the disruption of alveolar structure and loss of the normal proximal-peripheral differentiation of pulmonary epithelial cells. scRNA-seq analyses identified loss of normal epithelial cell identities and unique contributions of epithelial cells to the pathogenesis of IPF. The present study provides a rich data source to further explore lung health and disease.
Yan Xu, Takako Mizuno, Anusha Sridharan, Yina Du, Minzhe Guo, Jie Tang, Kathryn A. Wikenheiser-Brokamp, Anne-Karina T. Perl, Vincent A. Funari, Jason J. Gokey, Barry R. Stripp, Jeffrey A. Whitsett
Julian Mackay-Wiggan, Ali Jabbari, Nhan Nguyen, Jane E. Cerise, Charlotte Clark, Grace Ulerio, Megan Furniss, Roger Vaughan, Angela M. Christiano, Raphael Clynes
Intracerebral hemorrhage (ICH) causes high mortality and morbidity, but our knowledge of post-ICH neuronal death and related mechanisms is limited. In this study, we first demonstrated that ferroptosis, a newly identified form of cell death, occurs in the collagenase-induced ICH model in mice. We found that administration of ferrostatin-1, a specific inhibitor of ferroptosis, prevented neuronal death and reduced iron deposition induced by hemoglobin in organotypic hippocampal slice cultures (OHSCs). Mice treated with ferrostatin-1 after ICH exhibited marked brain protection and improved neurologic function. Additionally, we found that ferrostatin-1 reduced lipid reactive oxygen species production and attenuated the increased expression level of
Qian Li, Xiaoning Han, Xi Lan, Yufeng Gao, Jieru Wan, Frederick Durham, Tian Cheng, Jie Yang, Zhongyu Wang, Chao Jiang, Mingyao Ying, Raymond C. Koehler, Brent R. Stockwell, Jian Wang
Telomeres are short in type II alveolar epithelial cells (AECs) of patients with idiopathic pulmonary fibrosis (IPF). Whether dysfunctional telomeres contribute directly to development of lung fibrosis remains unknown. The objective of this study was to investigate whether telomere dysfunction in type II AECs, mediated by deletion of the telomere shelterin protein TRF1, leads to pulmonary fibrosis in mice (
Ram P. Naikawadi, Supparerk Disayabutr, Benat Mallavia, Matthew L. Donne, Gary Green, Janet L. La, Jason R. Rock, Mark R. Looney, Paul J. Wolters