Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Role of the caspase-8/RIPK3 axis in Alzheimer’s disease pathogenesis and Aβ-induced NLRP3 inflammasome activation
Sushanth Kumar, … , John R. Lukens, Christopher D. Deppmann
Sushanth Kumar, … , John R. Lukens, Christopher D. Deppmann
Published January 5, 2023
Citation Information: JCI Insight. 2023;8(3):e157433. https://doi.org/10.1172/jci.insight.157433.
View: Text | PDF
Research Article Inflammation Neuroscience

Role of the caspase-8/RIPK3 axis in Alzheimer’s disease pathogenesis and Aβ-induced NLRP3 inflammasome activation

  • Text
  • PDF
Abstract

The molecular mediators of cell death and inflammation in Alzheimer’s disease (AD) have yet to be fully elucidated. Caspase-8 is a critical regulator of several cell death and inflammatory pathways; however, its role in AD pathogenesis has not yet been examined in detail. In the absence of caspase-8, mice are embryonic lethal due to excessive receptor interacting protein kinase 3–dependent (RIPK3-dependent) necroptosis. Compound RIPK3 and caspase-8 mutants rescue embryonic lethality, which we leveraged to examine the roles of these pathways in an amyloid β–mediated (Aβ-mediated) mouse model of AD. We found that combined deletion of caspase-8 and RIPK3, but not RIPK3 alone, led to diminished Aβ deposition and microgliosis in the mouse model of AD carrying human presenilin 1 and amyloid precursor protein with 5 familial AD mutations (5xFAD). Despite its well-known role in cell death, caspase-8 did not appear to affect cell loss in the 5xFAD model. In contrast, we found that caspase-8 was a critical regulator of Aβ-driven inflammasome gene expression and IL-1β release. Interestingly, loss of RIPK3 had only a modest effect on disease progression, suggesting that inhibition of necroptosis or RIPK3-mediated cytokine pathways is not critical during midstages of Aβ amyloidosis. These findings suggest that therapeutics targeting caspase-8 may represent a novel strategy to limit Aβ amyloidosis and neuroinflammation in AD.

Authors

Sushanth Kumar, Sakar Budhathoki, Christopher B. Oliveira, August D. Kahle, O. Yipkin Calhan, John R. Lukens, Christopher D. Deppmann

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts