Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Saracatinib is an efficacious clinical candidate for fibrodysplasia ossificans progressiva
Eleanor Williams, … , Paul B. Yu, Alex N. Bullock
Eleanor Williams, … , Paul B. Yu, Alex N. Bullock
Published March 11, 2021
Citation Information: JCI Insight. 2021;6(8):e95042. https://doi.org/10.1172/jci.insight.95042.
View: Text | PDF
Research Article Bone biology Therapeutics

Saracatinib is an efficacious clinical candidate for fibrodysplasia ossificans progressiva

  • Text
  • PDF
Abstract

Currently, no effective therapies exist for fibrodysplasia ossificans progressiva (FOP), a rare congenital syndrome in which heterotopic bone is formed in soft tissues owing to dysregulated activity of the bone morphogenetic protein (BMP) receptor kinase ALK2 (also known as ACVR1). From a screen of known biologically active compounds, we identified saracatinib as a potent ALK2 kinase inhibitor. In enzymatic and cell-based assays, saracatinib preferentially inhibited ALK2, compared with other receptors of the BMP/TGF-β signaling pathway, and induced dorsalization in zebrafish embryos consistent with BMP antagonism. We further tested the efficacy of saracatinib using an inducible ACVR1Q207D-transgenic mouse line, which provides a model of heterotopic ossification (HO), as well as an inducible ACVR1R206H-knockin mouse, which serves as a genetically and physiologically faithful FOP model. In both models, saracatinib was well tolerated and potently inhibited the development of HO, even when administered transiently following soft tissue injury. Together, these data suggest that saracatinib is an efficacious clinical candidate for repositioning in FOP treatment, offering an accelerated path to clinical proof-of-efficacy studies and potentially significant benefits to individuals with this devastating condition.

Authors

Eleanor Williams, Jana Bagarova, Georgina Kerr, Dong-Dong Xia, Elsie S. Place, Devaveena Dey, Yue Shen, Geoffrey A. Bocobo, Agustin H. Mohedas, Xiuli Huang, Philip E. Sanderson, Arthur Lee, Wei Zheng, Aris N. Economides, James C. Smith, Paul B. Yu, Alex N. Bullock

×

Full Text PDF | Download (1.47 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts