Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Plastin-3 extends survival and reduces severity in mouse models of spinal muscular atrophy
Kevin A. Kaifer, … , D.D.W. Cornelison, Christian L. Lorson
Kevin A. Kaifer, … , D.D.W. Cornelison, Christian L. Lorson
Published March 9, 2017
Citation Information: JCI Insight. 2017;2(5):e89970. https://doi.org/10.1172/jci.insight.89970.
View: Text | PDF
Research Article Neuroscience Therapeutics

Plastin-3 extends survival and reduces severity in mouse models of spinal muscular atrophy

  • Text
  • PDF
Abstract

Spinal muscular atrophy (SMA) is a leading genetic cause of infantile death and is caused by the loss of survival motor neuron-1 (SMN1). Importantly, a nearly identical gene is present called SMN2; however, the majority of SMN2-derived transcripts are alternatively spliced and encode a truncated, dysfunctional protein. Recently, several compounds designed to increase SMN protein have entered clinical trials, including antisense oligonucleotides (ASOs), traditional small molecules, and gene therapy. Expanding beyond SMN-centric therapeutics is important, as it is likely that the breadth of the patient spectrum and the inherent complexity of the disease will be difficult to address with a single therapeutic strategy. Several SMN-independent pathways that could impinge upon the SMA phenotype have been examined with varied success. To identify disease-modifying pathways that could serve as stand-alone therapeutic targets or could be used in combination with an SMN-inducing compound, we investigated adeno-associated virus–mediated (AAV-mediated) gene therapy using plastin-3 (PLS3). Here, we report that AAV9-PLS3 extends survival in an intermediate model of SMA mice as well as in a pharmacologically induced model of SMA using a splice-switching ASO that increases SMN production. PLS3 coadministration improves the phenotype beyond the ASO, demonstrating the potential utility of combinatorial therapeutics in SMA that target SMN-independent and SMN-dependent pathways.

Authors

Kevin A. Kaifer, Eric Villalón, Erkan Y. Osman, Jacqueline J. Glascock, Laura L. Arnold, D.D.W. Cornelison, Christian L. Lorson

×

Full Text PDF | Download (1.03 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts