Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Collagen-binding C-type natriuretic peptide enhances chondrogenesis and osteogenesis
Kenta Hirai, Kenta Sawamura, Ryusaku Esaki, Ryusuke Sawada, Yuka Okusha, Eriko Aoyama, Hiroki Saito, Kentaro Uchida, Takehiko Mima, Satoshi Kubota, Hirokazu Tsukahara, Shiro Imagama, Masaki Matsushita, Osamu Matsushita, Yasuyuki Hosono
Kenta Hirai, Kenta Sawamura, Ryusaku Esaki, Ryusuke Sawada, Yuka Okusha, Eriko Aoyama, Hiroki Saito, Kentaro Uchida, Takehiko Mima, Satoshi Kubota, Hirokazu Tsukahara, Shiro Imagama, Masaki Matsushita, Osamu Matsushita, Yasuyuki Hosono
View: Text | PDF
Research Article Bone biology Cell biology Development

Collagen-binding C-type natriuretic peptide enhances chondrogenesis and osteogenesis

  • Text
  • PDF
Abstract

C-type natriuretic peptide (CNP) is known to promote chondrocyte proliferation and bone formation; however, CNP’s extremely short half-life necessitates continuous intravascular administration to achieve bone-lengthening effects. Vosoritide, a CNP analog designed for resistance to neutral endopeptidase, allows for once-daily administration. Nonetheless, it distributes systemically rather than localizing to target tissues, which may result in adverse effects such as hypotension. To enhance local drug delivery and therapeutic efficacy, we developed a potentially novel synthetic protein by fusing a collagen-binding domain (CBD) to CNP, termed CBD-CNP. This fusion protein exhibited stability under heat conditions and retained the collagen-binding ability and bioactivity as CNP. CBD-CNP localized to articular cartilage in fetal murine tibiae and promoted bone elongation. Spatial transcriptomic analysis revealed that the upregulation of chondromodulin expression may contribute to its therapeutic effects. Treatment of CBD-CNP mixed with collagen powder to a fracture site of a mouse model increased bone mineral content and bone volume compared with CNP-22. Intraarticular injection of CBD-CNP to a mouse model of knee osteoarthritis suppressed subchondral bone thickening. By addressing the limitations of CNP’s rapid degeneration, CBD-CNP leverages its collagen-binding capacity to achieve targeted, sustained delivery in collagen-rich tissues, offering a promising strategy for enhancing chondrogenesis and osteogenesis.

Authors

Kenta Hirai, Kenta Sawamura, Ryusaku Esaki, Ryusuke Sawada, Yuka Okusha, Eriko Aoyama, Hiroki Saito, Kentaro Uchida, Takehiko Mima, Satoshi Kubota, Hirokazu Tsukahara, Shiro Imagama, Masaki Matsushita, Osamu Matsushita, Yasuyuki Hosono

×

Figure 3

Bone growth effect of CBD-CNP in ex vivo bone culture.

Options: View larger image (or click on image) Download as PowerPoint
Bone growth effect of CBD-CNP in ex vivo bone culture.
(A) Representativ...
(A) Representative DAB staining images of fetal murine tibiae (E16.5, FVB background) treated with FGF2 in the presence of CNP-22 or CBD-CNP with daily medium changes. CNP-22 was detected with anti-CNP antibody, and CBD-CNP was detected with anti-CBD antibody. (B) Fetal murine tibiae were cultured and treated with FGF2 in the presence of CNP-22 or CBD-CNP with daily medium changes. After 4 days, the tibial lengths were measured and compared with those of contralateral untreated tibiae in the same patients (n = 9). (C) To assess the prolonged effects, only a single administration of CNP-22 or CBD-CNP was performed on the first day, whereas FGF2 was added daily. The tibial lengths were measured after 4 days from the first dosage (n = 7 in FGF2 and CBD-CNP groups, and n = 6 in CNP-22 group). Scale bars: 50 μm in A; 1 mm in B and C. The tibial lengths within patients were compared using a paired t test. DAB, 3,3′-diaminobenzidine.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts