Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Reduced osteogenic factors and early osteoblast senescence in SOD1(G93A) ALS mouse model
Burak Özkan, Jan-Moritz Ramge, Diana Wiesner, Jelena Scekic-Zahirovic, Stefano Antonucci, Sandra Nungeß, Dorothea Gebauer, Anita Ignatius, Jochen H. Weishaupt, Melanie Haffner-Luntzer, Francesco Roselli
Burak Özkan, Jan-Moritz Ramge, Diana Wiesner, Jelena Scekic-Zahirovic, Stefano Antonucci, Sandra Nungeß, Dorothea Gebauer, Anita Ignatius, Jochen H. Weishaupt, Melanie Haffner-Luntzer, Francesco Roselli
View: Text | PDF
Research In-Press Preview Bone biology Cell biology Neuroscience

Reduced osteogenic factors and early osteoblast senescence in SOD1(G93A) ALS mouse model

  • Text
  • PDF
Abstract

Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease. Emerging evidence suggests manifestations beyond the neuromuscular system. Bone alterations are part of the ALS clinical picture; it remains unclear whether they are secondary to muscle denervation or due to an autonomous process. We investigated skeletal involvement in the SOD1(G93A) mouse model at presymptomatic (P45) and symptomatic (P110) stage through biomechanical and transcriptomic approaches. Three-point bending revealed significant reductions in femoral rigidity and maximum bending force in SOD1 mutants at P45, indicating early structural deficits. Micro-CT analysis demonstrated reduced trabecular bone mineral density and thickness at P45, with progressive trabecular loss and cortical thinning by P110. Histological examination revealed marked osteoblast loss at P45 suggesting impaired bone formation as the primary early mechanism. Transcriptomics of bulk bone and cultured osteoblasts from P45 mice identified dysregulation of bone differentiation, including downregulation of osteoblast differentiation genes and upregulation of negative regulators of ossification and increased cell senescence signatures. Unfolded protein response was upregulated in SOD1 osteoblasts. Immunohistochemistry confirmed the senescence phenotype with increased p16Ink4a level in SOD1 osteoblasts. These findings suggest that bone deterioration precede overt motor symptoms and are linked to osteoblast premature senescence.

Authors

Burak Özkan, Jan-Moritz Ramge, Diana Wiesner, Jelena Scekic-Zahirovic, Stefano Antonucci, Sandra Nungeß, Dorothea Gebauer, Anita Ignatius, Jochen H. Weishaupt, Melanie Haffner-Luntzer, Francesco Roselli

×

Full Text PDF

Download PDF (2.34 MB)

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts