Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

METTL14 promotes intimal hyperplasia through m6A-mediated control of vascular smooth muscle dedifferentiation genes
Grace Chensee, … , Justin J.L. Wong, Renjing Liu
Grace Chensee, … , Justin J.L. Wong, Renjing Liu
Published April 23, 2025
Citation Information: JCI Insight. 2025;10(10):e184444. https://doi.org/10.1172/jci.insight.184444.
View: Text | PDF
Research Article Therapeutics Vascular biology

METTL14 promotes intimal hyperplasia through m6A-mediated control of vascular smooth muscle dedifferentiation genes

  • Text
  • PDF
Abstract

Vascular smooth muscle cells (VSMCs) possess significant phenotypic plasticity, shifting between a contractile phenotype and a synthetic state for vascular repair/remodeling. Dysregulated VSMC transformation, marked by excessive proliferation and migration, primarily drives intimal hyperplasia. N6-methyladenosine (m6A), the most prevalent RNA modification in eukaryotes, plays a critical role in gene expression regulation; however, its impact on VSMC plasticity is not fully understood. We investigated the changes in m6A modification and its regulatory factors during VSMC phenotypic shifts and their influence on intimal hyperplasia. We demonstrate that METTL14, crucial for m6A deposition, significantly promoted VSMC dedifferentiation. METTL14 expression, initially negligible, was elevated in synthetic VSMC cultures, postinjury neointimal VSMCs, and human restenotic arteries. Reducing Mettl14 levels in mouse primary VSMCs decreased prosynthetic genes, suppressing their proliferation and migration. m6A-RIP-seq profiling showed key VSMC gene networks undergo altered m6A regulation in Mettl14-deficient cells. Mettl14 enhanced Klf4 and Serpine1 expression through increased m6A deposition. Local Mettl14 knockdown significantly curbed neointimal formation after arterial injury, and reducing Mettl14 in hyperplastic arteries halted further neointimal development. We show that Mettl14 is a pivotal regulator of VSMC dedifferentiation, influencing Klf4- and Serpine1-mediated phenotypic conversion. Inhibiting METTL14 is a viable strategy for preventing restenosis and halting restenotic occlusions.

Authors

Grace Chensee, Bob S.L. Lee, Immanuel D. Green, Jessica Tieng, Renhua Song, Natalia Pinello, Quintin Lee, Majid Mehravar, David A. Robinson, Mian Wang, Mary M. Kavurma, Jun Yu, Justin J.L. Wong, Renjing Liu

×

Usage data is cumulative from April 2025 through December 2025.

Usage JCI PMC
Text version 1,387 179
PDF 286 52
Figure 318 0
Supplemental data 149 9
Citation downloads 62 0
Totals 2,202 240
Total Views 2,442

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts