Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Altered Sox9 and FGF signaling gene expression in Aga2 OI mice negatively affects linear growth
Jennifer Zieba, … , Daniel H. Cohn, Deborah Krakow
Jennifer Zieba, … , Daniel H. Cohn, Deborah Krakow
Published October 5, 2023
Citation Information: JCI Insight. 2023;8(21):e171984. https://doi.org/10.1172/jci.insight.171984.
View: Text | PDF
Research Article Bone biology Development

Altered Sox9 and FGF signaling gene expression in Aga2 OI mice negatively affects linear growth

  • Text
  • PDF
Abstract

Osteogenesis imperfecta (OI), or brittle bone disease, is a disorder characterized by bone fragility and increased fracture incidence. All forms of OI also feature short stature, implying an effect on endochondral ossification. Using the Aga2+/– mouse, which has a mutation in type I collagen, we show an affected growth plate primarily due to a shortened proliferative zone. We used single-cell RNA-Seq analysis of tibial and femoral growth plate tissues to understand transcriptional consequences on growth plate cell types. We show that perichondrial cells, which express abundant type I procollagen, and growth plate chondrocytes, which were found to express low amounts of type I procollagen, had ER stress and dysregulation of the same unfolded protein response pathway as previously demonstrated in osteoblasts. Aga2+/– proliferating chondrocytes showed increased FGF and MAPK signaling, findings consistent with accelerated differentiation. There was also increased Sox9 expression throughout the growth plate, which is expected to accelerate early chondrocyte differentiation but reduce late hypertrophic differentiation. These data reveal that mutant type I collagen expression in OI has an impact on the cartilage growth plate. These effects on endochondral ossification indicate that OI is a biologically complex phenotype going beyond its known impacts on bone to negatively affect linear growth.

Authors

Jennifer Zieba, Lisette Nevarez, Davis Wachtell, Jorge H. Martin, Alexander Kot, Sereen Wong, Daniel H. Cohn, Deborah Krakow

×
Problems with a PDF?

This file is in Adobe Acrobat (PDF) format. If you have not installed and configured the Adobe Acrobat Reader on your system.

Having trouble reading a PDF?

PDFs are designed to be printed out and read, but if you prefer to read them online, you may find it easier if you increase the view size to 125%.

Having trouble saving a PDF?

Many versions of the free Acrobat Reader do not allow Save. You must instead save the PDF from the JCI Online page you downloaded it from. PC users: Right-click on the Download link and choose the option that says something like "Save Link As...". Mac users should hold the mouse button down on the link to get these same options.

Having trouble printing a PDF?

  1. Try printing one page at a time or to a newer printer.
  2. Try saving the file to disk before printing rather than opening it "on the fly." This requires that you configure your browser to "Save" rather than "Launch Application" for the file type "application/pdf", and can usually be done in the "Helper Applications" options.
  3. Make sure you are using the latest version of Adobe's Acrobat Reader.

Supplemental data - Download (4.58 MB)

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts