Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Issue published December 7, 2017

  • Volume 2, Issue 23
  • Previous Issue | Next Issue
Research Articles
Elevated urinary CRELD2 is associated with endoplasmic reticulum stress–mediated kidney disease
Yeawon Kim, … , Anthony J. Bleyer, Ying Maggie Chen
Yeawon Kim, … , Anthony J. Bleyer, Ying Maggie Chen
Published December 7, 2017
Citation Information: JCI Insight. 2017;2(23):e92896. https://doi.org/10.1172/jci.insight.92896.
View: Text | PDF

Elevated urinary CRELD2 is associated with endoplasmic reticulum stress–mediated kidney disease

  • Text
  • PDF
Abstract

ER stress has emerged as a signaling platform underlying the pathogenesis of various kidney diseases. Thus, there is an urgent need to develop ER stress biomarkers in the incipient stages of ER stress–mediated kidney disease, when a kidney biopsy is not yet clinically indicated, for early therapeutic intervention. Cysteine-rich with EGF-like domains 2 (CRELD2) is a newly identified protein that is induced and secreted under ER stress. For the first time to our knowledge, we demonstrate that CRELD2 can serve as a sensitive urinary biomarker for detecting ER stress in podocytes or renal tubular cells in murine models of podocyte ER stress–induced nephrotic syndrome and tunicamycin- or ischemia-reperfusion–induced acute kidney injury (AKI), respectively. Most importantly, urinary CRELD2 elevation occurs in patients with autosomal dominant tubulointerstitial kidney disease caused by UMOD mutations, a prototypical tubular ER stress disease. In addition, in pediatric patients undergoing cardiac surgery, detectable urine levels of CRELD2 within postoperative 6 hours strongly associate with severe AKI after surgery. In conclusion, our study has identified CRELD2 as a potentially novel urinary ER stress biomarker with potential utility in early diagnosis, risk stratification, treatment response monitoring, and directing of ER-targeted therapies in selected patient subgroups in the emerging era of precision nephrology.

Authors

Yeawon Kim, Sun-Ji Park, Scott R. Manson, Carlos A.F. Molina, Kendrah Kidd, Heather Thiessen-Philbrook, Rebecca J. Perry, Helen Liapis, Stanislav Kmoch, Chirag R. Parikh, Anthony J. Bleyer, Ying Maggie Chen

×

Inhibition of AKT signaling uncouples T cell differentiation from expansion for receptor-engineered adoptive immunotherapy
Christopher A. Klebanoff, … , Steven A. Feldman, Nicholas P. Restifo
Christopher A. Klebanoff, … , Steven A. Feldman, Nicholas P. Restifo
Published December 7, 2017
Citation Information: JCI Insight. 2017;2(23):e95103. https://doi.org/10.1172/jci.insight.95103.
View: Text | PDF

Inhibition of AKT signaling uncouples T cell differentiation from expansion for receptor-engineered adoptive immunotherapy

  • Text
  • PDF
Abstract

Adoptive immunotherapies using T cells genetically redirected with a chimeric antigen receptor (CAR) or T cell receptor (TCR) are entering mainstream clinical practice. Despite encouraging results, some patients do not respond to current therapies. In part, this phenomenon has been associated with infusion of reduced numbers of early memory T cells. Herein, we report that AKT signaling inhibition is compatible with CAR and TCR retroviral transduction of human T cells while promoting a CD62L-expressing central memory phenotype. Critically, this intervention did not compromise cell yield. Mechanistically, disruption of AKT signaling preserved MAPK activation and promoted the intranuclear localization of FOXO1, a transcriptional regulator of T cell memory. Consequently, AKT signaling inhibition synchronized the transcriptional profile for FOXO1-dependent target genes across multiple donors. Expression of an AKT-resistant FOXO1 mutant phenocopied the influence of AKT signaling inhibition, while addition of AKT signaling inhibition to T cells expressing mutant FOXO1 failed to further augment the frequency of CD62L-expressing cells. Finally, treatment of established B cell acute lymphoblastic leukemia was superior using anti-CD19 CAR–modified T cells transduced and expanded in the presence of an AKT inhibitor compared with conventionally grown T cells. Thus, inhibition of signaling along the PI3K/AKT axis represents a generalizable strategy to generate large numbers of receptor-modified T cells with an early memory phenotype and superior antitumor efficacy.

Authors

Christopher A. Klebanoff, Joseph G. Crompton, Anthony J. Leonardi, Tori N. Yamamoto, Smita S. Chandran, Robert L. Eil, Madhusudhanan Sukumar, Suman K. Vodnala, Jinhui Hu, Yun Ji, David Clever, Mary A. Black, Devikala Gurusamy, Michael J. Kruhlak, Ping Jin, David F. Stroncek, Luca Gattinoni, Steven A. Feldman, Nicholas P. Restifo

×

Glycolytic requirement for NK cell cytotoxicity and cytomegalovirus control
Annelise Y. Mah, … , Anthony R. French, Megan A. Cooper
Annelise Y. Mah, … , Anthony R. French, Megan A. Cooper
Published December 7, 2017
Citation Information: JCI Insight. 2017;2(23):e95128. https://doi.org/10.1172/jci.insight.95128.
View: Text | PDF

Glycolytic requirement for NK cell cytotoxicity and cytomegalovirus control

  • Text
  • PDF
Abstract

NK cell activation has been shown to be metabolically regulated in vitro; however, the role of metabolism during in vivo NK cell responses to infection is unknown. We examined the role of glycolysis in NK cell function during murine cytomegalovirus (MCMV) infection and the ability of IL-15 to prime NK cells during CMV infection. The glucose metabolism inhibitor 2-deoxy-ᴅ-glucose (2DG) impaired both mouse and human NK cell cytotoxicity following priming in vitro. Similarly, MCMV-infected mice treated with 2DG had impaired clearance of NK-specific targets in vivo, which was associated with higher viral burden and susceptibility to infection on the C57BL/6 background. IL-15 priming is known to alter NK cell metabolism and metabolic requirements for activation. Treatment with the IL-15 superagonist ALT-803 rescued mice from otherwise lethal infection in an NK-dependent manner. Consistent with this, treatment of a patient with ALT-803 for recurrent CMV reactivation after hematopoietic cell transplant was associated with clearance of viremia. These studies demonstrate that NK cell–mediated control of viral infection requires glucose metabolism and that IL-15 treatment in vivo can reduce this requirement and may be effective as an antiviral therapy.

Authors

Annelise Y. Mah, Armin Rashidi, Molly P. Keppel, Nermina Saucier, Emily K. Moore, Joshua B. Alinger, Sandeep K. Tripathy, Sandeep K. Agarwal, Emily K. Jeng, Hing C. Wong, Jeffrey S. Miller, Todd A. Fehniger, Emily M. Mace, Anthony R. French, Megan A. Cooper

×

Early pridopidine treatment improves behavioral and transcriptional deficits in YAC128 Huntington disease mice
Marta Garcia-Miralles, … , Michael R. Hayden, Mahmoud A. Pouladi
Marta Garcia-Miralles, … , Michael R. Hayden, Mahmoud A. Pouladi
Published December 7, 2017
Citation Information: JCI Insight. 2017;2(23):e95665. https://doi.org/10.1172/jci.insight.95665.
View: Text | PDF

Early pridopidine treatment improves behavioral and transcriptional deficits in YAC128 Huntington disease mice

  • Text
  • PDF
Abstract

Pridopidine is currently under clinical development for Huntington disease (HD), with on-going studies to better characterize its therapeutic benefit and mode of action. Pridopidine was administered either prior to the appearance of disease phenotypes or in advanced stages of disease in the YAC128 mouse model of HD. In the early treatment cohort, animals received 0, 10, or 30 mg/kg pridopidine for a period of 10.5 months. In the late treatment cohort, animals were treated for 8 weeks with 0 mg/kg or an escalating dose of pridopidine (10 to 30 mg/kg over 3 weeks). Early treatment improved motor coordination and reduced anxiety- and depressive-like phenotypes in YAC128 mice, but it did not rescue striatal and corpus callosum atrophy. Late treatment, conversely, only improved depressive-like symptoms. RNA-seq analysis revealed that early pridopidine treatment reversed striatal transcriptional deficits, upregulating disease-specific genes that are known to be downregulated during HD, a finding that is experimentally confirmed herein. This suggests that pridopidine exerts beneficial effects at the transcriptional level. Taken together, our findings support continued clinical development of pridopidine for HD, particularly in the early stages of disease, and provide valuable insight into the potential therapeutic mode of action of pridopidine.

Authors

Marta Garcia-Miralles, Michal Geva, Jing Ying Tan, Nur Amirah Binte Mohammad Yusof, Yoonjeong Cha, Rebecca Kusko, Liang Juin Tan, Xiaohong Xu, Iris Grossman, Aric Orbach, Michael R. Hayden, Mahmoud A. Pouladi

×

Requirement of Treg-intrinsic CTLA4/PKCη signaling pathway for suppressing tumor immunity
Christophe Pedros, … , Kok-Fai Kong, Amnon Altman
Christophe Pedros, … , Kok-Fai Kong, Amnon Altman
Published December 7, 2017
Citation Information: JCI Insight. 2017;2(23):e95692. https://doi.org/10.1172/jci.insight.95692.
View: Text | PDF

Requirement of Treg-intrinsic CTLA4/PKCη signaling pathway for suppressing tumor immunity

  • Text
  • PDF
Abstract

The ability of Tregs to control the development of immune responses is essential for maintaining immune system homeostasis. However, Tregs also inhibit the development of efficient antitumor responses. Here, we explored the characteristics and mechanistic basis of the Treg-intrinsic CTLA4/PKCη signaling pathway that we recently found to be required for contact-dependent Treg-mediated suppression. We show that PKCη is required for the Treg-mediated suppression of tumor immunity in vivo. The presence of PKCη-deficient (Prkch–/–) Tregs in the tumor microenvironment was associated with a significantly increased expression of the costimulatory molecule CD86 on intratumoral CD103+ DCs, enhanced priming of antigen-specific CD8+ T cells, and greater levels of effector cytokines produced by these cells. Similar to mouse Tregs, the GIT/PAK/PIX complex also operated downstream of CTLA4 and PKCη in human Tregs, and GIT2 knockdown in Tregs promoted antitumor immunity. Collectively, our data suggest that targeting the CTLA4/PKCη/GIT/PAK/PIX signaling pathway in Tregs could represent a novel immunotherapeutic strategy to alleviate the negative impact of Tregs on antitumor immune responses.

Authors

Christophe Pedros, Ann J. Canonigo-Balancio, Kok-Fai Kong, Amnon Altman

×

Dysregulated aldosterone secretion in persons of African descent with endothelin-1 gene variants
Jia W. Tan, … , Jose R. Romero, Gordon H. Williams
Jia W. Tan, … , Jose R. Romero, Gordon H. Williams
Published December 7, 2017
Citation Information: JCI Insight. 2017;2(23):e95992. https://doi.org/10.1172/jci.insight.95992.
View: Text | PDF

Dysregulated aldosterone secretion in persons of African descent with endothelin-1 gene variants

  • Text
  • PDF
Abstract

Compared with persons of European descent (ED), persons of African descent (AD) have lower aldosterone (ALDO) levels, with the assumption being that the increased cardiovascular disease (CVD) risk associated with AD is not related to ALDO. However, the appropriateness of the ALDO levels for the volume status in AD is unclear. We hypothesized that, even though ALDO levels are lower in AD, they are inappropriately increased, and therefore, ALDO could mediate the increased CVD in AD. To test this hypothesis, we analyzed data from HyperPATH — 1,788 individuals from the total cohort and 765 restricted to ED-to-AD in a 2:1 match and genotyped for the endothelin-1 gene (EDN1). Linear regression analyses with adjustments were performed. In the total and restricted cohorts, PRA, ALDO, and urinary potassium levels were significantly lower in AD. However, in the AD group, greater ALDO dysregulation was present as evidenced by higher ALDO/plasma renin activity (PRA) ratios (ARR) and sodium-modulated ALDO suppression-to-stimulation indices. Furthermore, EDN1 minor allele carriers had significantly greater ARRs than noncarriers but only in the AD group. ARR levels were modulated by a significant interaction between EDN1 and AD. Thus, EDN1 variants may identify particularly susceptible ADs who will be responsive to treatment targeting ALDO-dependent pathways (e.g., mineralocorticoid-receptor antagonists).

Authors

Jia W. Tan, Tina Gupta, Worapaka Manosroi, Tham M. Yao, Paul N. Hopkins, Jonathan S. Williams, Gail K. Adler, Jose R. Romero, Gordon H. Williams

×

Myeloperoxidase-derived 2-chlorofatty acids contribute to human sepsis mortality via acute respiratory distress syndrome
Nuala J. Meyer, … , Jane McHowat, David A. Ford
Nuala J. Meyer, … , Jane McHowat, David A. Ford
Published December 7, 2017
Citation Information: JCI Insight. 2017;2(23):e96432. https://doi.org/10.1172/jci.insight.96432.
View: Text | PDF

Myeloperoxidase-derived 2-chlorofatty acids contribute to human sepsis mortality via acute respiratory distress syndrome

  • Text
  • PDF
Abstract

Sepsis-associated acute respiratory distress syndrome (ARDS) is characterized by neutrophilic inflammation and poor survival. Since neutrophil myeloperoxidase (MPO) activity leads to increased plasma 2-chlorofatty acid (2-ClFA) levels, we hypothesized that plasma concentrations of 2-ClFAs would associate with ARDS and mortality in subjects with sepsis. In sequential consenting patients with sepsis, free 2-ClFA levels were significantly associated with ARDS, and with 30-day mortality, for each log increase in free 2-chlorostearic acid. Plasma MPO was not associated with either ARDS or 30-day mortality but was correlated with 2-ClFA levels. Addition of plasma 2-ClFA levels to the APACHE III score improved prediction for ARDS. Plasma 2-ClFA levels correlated with plasma levels of angiopoietin-2, E selectin, and soluble thrombomodulin. Endothelial cells treated with 2-ClFA responded with increased adhesion molecule surface expression, increased angiopoietin-2 release, and dose-dependent endothelial permeability. Our results suggest that 2-ClFAs derived from neutrophil MPO-catalyzed oxidation contribute to pulmonary endothelial injury and have prognostic utility in sepsis-associated ARDS.

Authors

Nuala J. Meyer, John P. Reilly, Rui Feng, Jason D. Christie, Stanley L. Hazen, Carolyn J. Albert, Jacob D. Franke, Celine L. Hartman, Jane McHowat, David A. Ford

×

PI3Kα inactivation in leptin receptor cells increases leptin sensitivity but disrupts growth and reproduction
David Garcia-Galiano, … , Jennifer W. Hill, Carol F. Elias
David Garcia-Galiano, … , Jennifer W. Hill, Carol F. Elias
Published December 7, 2017
Citation Information: JCI Insight. 2017;2(23):e96728. https://doi.org/10.1172/jci.insight.96728.
View: Text | PDF

PI3Kα inactivation in leptin receptor cells increases leptin sensitivity but disrupts growth and reproduction

  • Text
  • PDF
Abstract

The role of PI3K in leptin physiology has been difficult to determine due to its actions downstream of several metabolic cues, including insulin. Here, we used a series of mouse models to dissociate the roles of specific PI3K catalytic subunits and of insulin receptor (InsR) downstream of leptin signaling. We show that disruption of p110α and p110β subunits in leptin receptor cells (LRΔα+β) produces a lean phenotype associated with increased energy expenditure, locomotor activity, and thermogenesis. LRΔα+β mice have deficient growth and delayed puberty. Single subunit deletion (i.e., p110α in LRΔα) resulted in similarly increased energy expenditure, deficient growth, and pubertal development, but LRΔα mice have normal locomotor activity and thermogenesis. Blunted PI3K in leptin receptor (LR) cells enhanced leptin sensitivity in metabolic regulation due to increased basal hypothalamic pAKT, leptin-induced pSTAT3, and decreased PTEN levels. However, these mice are unresponsive to leptin’s effects on growth and puberty. We further assessed if these phenotypes were associated with disruption of insulin signaling. LRΔInsR mice have no metabolic or growth deficit and show only mild delay in pubertal completion. Our findings demonstrate that PI3K in LR cells plays an essential role in energy expenditure, growth, and reproduction. These actions are independent from insulin signaling.

Authors

David Garcia-Galiano, Beatriz C. Borges, Jose Donato Jr., Susan J. Allen, Nicole Bellefontaine, Mengjie Wang, Jean J. Zhao, Kenneth M. Kozloff, Jennifer W. Hill, Carol F. Elias

×

ICAM1+ neutrophils promote chronic inflammation via ASPRV1 in B cell–dependent autoimmune encephalomyelitis
Ryder F. Whittaker Hawkins, … , Martin Pelletier, Luc Vallières
Ryder F. Whittaker Hawkins, … , Martin Pelletier, Luc Vallières
Published December 7, 2017
Citation Information: JCI Insight. 2017;2(23):e96882. https://doi.org/10.1172/jci.insight.96882.
View: Text | PDF

ICAM1+ neutrophils promote chronic inflammation via ASPRV1 in B cell–dependent autoimmune encephalomyelitis

  • Text
  • PDF
Abstract

Neutrophils contribute to demyelinating autoimmune diseases, yet their phenotype and functions have been elusive to date. Here, we demonstrate that ICAM1 surface expression distinguishes extra- from intravascular neutrophils in the mouse CNS during experimental autoimmune encephalomyelitis (EAE). Transcriptomic analysis of these 2 subpopulations indicated that neutrophils, once extravasated, acquire macrophage-like properties, including the potential for immunostimulation and MHC class II–mediated antigen presentation. In corroboration, super-resolution (3D stimulated emission-depletion [STED]) microscopy revealed neutrophils forming synapses with T and B cells in situ. Further, neutrophils specifically express the aspartic retroviral-like protease ASPRV1, which increases in the CNS during EAE and severe cases of multiple sclerosis. Without ASPRV1, mice immunized with a new B cell–dependent myelin antigen (but not with the traditional myelin oligodendrocyte glycoprotein peptide) develop a chronic phase of EAE that is less severe and even completely fades in many individuals. Therefore, ICAM1+ macrophage–like neutrophils can play both shared and nonredundant roles in autoimmune demyelination, among them perpetuating inflammation via ASPRV1.

Authors

Ryder F. Whittaker Hawkins, Alexandre Patenaude, Aline Dumas, Rajiv Jain, Yodit Tesfagiorgis, Steven Kerfoot, Takeshi Matsui, Matthias Gunzer, Patrice E. Poubelle, Catherine Larochelle, Martin Pelletier, Luc Vallières

×

The E3 ubiquitin ligase Siah1 regulates adrenal gland organization and aldosterone secretion
Marzia Scortegagna, … , Constantine A. Stratakis, Ze’ev A. Ronai
Marzia Scortegagna, … , Constantine A. Stratakis, Ze’ev A. Ronai
Published December 7, 2017
Citation Information: JCI Insight. 2017;2(23):e97128. https://doi.org/10.1172/jci.insight.97128.
View: Text | PDF

The E3 ubiquitin ligase Siah1 regulates adrenal gland organization and aldosterone secretion

  • Text
  • PDF
Abstract

Primary and secondary hypertension are major risk factors for cardiovascular disease, the leading cause of death worldwide. Elevated secretion of aldosterone resulting from primary aldosteronism (PA) is a key driver of secondary hypertension. Here, we report an unexpected role for the ubiquitin ligase Siah1 in adrenal gland development and PA. Siah1a–/– mice exhibit altered adrenal gland morphology, as reflected by a diminished X-zone, enlarged medulla, and dysregulated zonation of the glomerulosa as well as increased aldosterone levels and aldosterone target gene expression and reduced plasma potassium levels. Genes involved in catecholamine biosynthesis and cAMP signaling are upregulated in the adrenal glands of Siah1a–/– mice, while genes related to retinoic acid signaling and cholesterol biosynthesis are downregulated. Loss of Siah1 leads to increased expression of the Siah1 substrate PIAS1, an E3 SUMO protein ligase implicated in the suppression of LXR, a key regulator of cholesterol levels in the adrenal gland. In addition, SIAH1 sequence variants were identified in patients with PA; such variants impaired SIAH1 ubiquitin ligase activity, resulting in elevated PIAS1 expression. These data identify a role for the Siah1-PIAS1 axis in adrenal gland organization and function and point to possible therapeutic targets for hyperaldosteronism.

Authors

Marzia Scortegagna, Annabel Berthon, Nikolaos Settas, Andreas Giannakou, Guillermina Garcia, Jian-Liang Li, Brian James, Robert C. Liddington, José G. Vilches-Moure, Constantine A. Stratakis, Ze’ev A. Ronai

×
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts