Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Vascular biologies

  • 163 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 15
  • 16
  • 17
  • Next →
Heterogeneous perivascular cell coverage affects breast cancer metastasis and response to chemotherapy
Jiha Kim, … , Funda Meric-Bernstam, Valerie S. LeBleu
Jiha Kim, … , Funda Meric-Bernstam, Valerie S. LeBleu
Published December 22, 2016
Citation Information: JCI Insight. 2016;1(21):e90733. https://doi.org/10.1172/jci.insight.90733.
View: Text | PDF

Heterogeneous perivascular cell coverage affects breast cancer metastasis and response to chemotherapy

  • Text
  • PDF
Abstract

Angiogenesis and co-optive vascular remodeling are prerequisites of solid tumor growth. Vascular heterogeneity, notably perivascular composition, may play a critical role in determining the rate of cancer progression. The contribution of vascular pericyte heterogeneity to cancer progression and therapy response is unknown. Here, we show that angiopoietin-2 (Ang2) orchestrates pericyte heterogeneity in breast cancer with an effect on metastatic disease and response to chemotherapy. Using multispectral imaging of human breast tumor specimens, we report that perivascular composition, as defined by the ratio of PDGFRβ– and desmin+ pericytes, provides information about the response to epirubicin but not paclitaxel. Using 17 distinct patient-derived breast cancer xenografts, we demonstrate a cancer cell–derived influence on stromal Ang2 production and a cancer cell–defined control over tumor vasculature and perivascular heterogeneity. The aggressive features of tumors and their distinct response to therapies may thus emerge by the cancer cell–defined engagement of distinct and heterogeneous angiogenic programs.

Authors

Jiha Kim, Pedro Correa de Sampaio, Donna Marie Lundy, Qian Peng, Kurt W. Evans, Hikaru Sugimoto, Mihai Gagea, Yvonne Kienast, Nayra Soares do Amaral, Rafael Malagoli Rocha, Hans Petter Eikesdal, Per Eystein Lønning, Funda Meric-Bernstam, Valerie S. LeBleu

×

Cullin-3 mutation causes arterial stiffness and hypertension through a vascular smooth muscle mechanism
Larry N. Agbor, … , Frederick W. Quelle, Curt D. Sigmund
Larry N. Agbor, … , Frederick W. Quelle, Curt D. Sigmund
Published November 17, 2016
Citation Information: JCI Insight. 2016;1(19):e91015. https://doi.org/10.1172/jci.insight.91015.
View: Text | PDF

Cullin-3 mutation causes arterial stiffness and hypertension through a vascular smooth muscle mechanism

  • Text
  • PDF
Abstract

Cullin-3 (CUL3) mutations (CUL3Δ9) were previously identified in hypertensive patients with pseudohypoaldosteronism type-II (PHAII), but the mechanism causing hypertension and whether this is driven by renal tubular or extratubular mechanisms remains unknown. We report that selective expression of CUL3Δ9 in smooth muscle acts by interfering with expression and function of endogenous CUL3, resulting in impaired turnover of the CUL3 substrate RhoA, increased RhoA activity, and augmented RhoA/Rho kinase signaling. This caused vascular dysfunction and increased arterial pressure under baseline conditions and a marked increase in arterial pressure, collagen deposition, and vascular stiffness in response to a subpressor dose of angiotensin II, which did not cause hypertension in control mice. Inhibition of total cullin activity increased the level of CUL3 substrates cyclin E and RhoA, and expression of CUL3Δ9 decreased the level of the active form of endogenous CUL3 in human aortic smooth muscle cells. These data indicate that selective expression of the Cul3Δ9 mutation in vascular smooth muscle phenocopies the hypertension observed in Cul3Δ9 human subjects and suggest that mutations in CUL3 cause human hypertension in part through a mechanism involving smooth muscle dysfunction initiated by a loss of CUL3-mediated degradation of RhoA.

Authors

Larry N. Agbor, Stella-Rita C. Ibeawuchi, Chunyan Hu, Jing Wu, Deborah R. Davis, Henry L. Keen, Frederick W. Quelle, Curt D. Sigmund

×

Activating transcription factor-4 promotes mineralization in vascular smooth muscle cells
Masashi Masuda, … , Christopher M. Adams, Makoto Miyazaki
Masashi Masuda, … , Christopher M. Adams, Makoto Miyazaki
Published November 3, 2016
Citation Information: JCI Insight. 2016;1(18):e88646. https://doi.org/10.1172/jci.insight.88646.
View: Text | PDF

Activating transcription factor-4 promotes mineralization in vascular smooth muscle cells

  • Text
  • PDF
Abstract

Emerging evidence indicates that upregulation of the ER stress–induced pro-osteogenic transcription factor ATF4 plays an important role in vascular calcification, a common complication in patients with aging, diabetes, and chronic kidney disease (CKD). In this study, we demonstrated the pathophysiological role of ATF4 in vascular calcification using global Atf4 KO, smooth muscle cell–specific (SMC-specific) Atf4 KO, and transgenic (TG) mouse models. Reduced expression of ATF4 in global ATF4-haplodeficient and SMC-specific Atf4 KO mice reduced medial and atherosclerotic calcification under normal kidney and CKD conditions. In contrast, increased expression of ATF4 in SMC-specific Atf4 TG mice caused severe medial and atherosclerotic calcification. We further demonstrated that ATF4 transcriptionally upregulates the expression of type III sodium-dependent phosphate cotransporters (PiT1 and PiT2) by interacting with C/EBPβ. These results demonstrate that the ER stress effector ATF4 plays a critical role in the pathogenesis of vascular calcification through increased phosphate uptake in vascular SMCs.

Authors

Masashi Masuda, Shinobu Miyazaki-Anzai, Audrey L. Keenan, Yuji Shiozaki, Kayo Okamura, Wallace S. Chick, Kristina Williams, Xiaoyun Zhao, Shaikh Mizanoor Rahman, Yin Tintut, Christopher M. Adams, Makoto Miyazaki

×

IP3 receptors regulate vascular smooth muscle contractility and hypertension
Qingsong Lin, … , Ju Chen, Kunfu Ouyang
Qingsong Lin, … , Ju Chen, Kunfu Ouyang
Published October 20, 2016
Citation Information: JCI Insight. 2016;1(17):e89402. https://doi.org/10.1172/jci.insight.89402.
View: Text | PDF

IP3 receptors regulate vascular smooth muscle contractility and hypertension

  • Text
  • PDF
Abstract

Inositol 1, 4, 5-trisphosphate receptor–mediated (IP3R-mediated) calcium (Ca2+) release has been proposed to play an important role in regulating vascular smooth muscle cell (VSMC) contraction for decades. However, whether and how IP3R regulates blood pressure in vivo remains unclear. To address these questions, we have generated a smooth muscle–specific IP3R triple-knockout (smTKO) mouse model using a tamoxifen-inducible system. In this study, the role of IP3R-mediated Ca2+ release in adult VSMCs on aortic vascular contractility and blood pressure was assessed following tamoxifen induction. We demonstrated that deletion of IP3Rs significantly reduced aortic contractile responses to vasoconstrictors, including phenylephrine, U46619, serotonin, and endothelin 1. Deletion of IP3Rs also dramatically reduced the phosphorylation of MLC20 and MYPT1 induced by U46619. Furthermore, although the basal blood pressure of smTKO mice remained similar to that of wild-type controls, the increase in systolic blood pressure upon chronic infusion of angiotensin II was significantly attenuated in smTKO mice. Taken together, our results demonstrate an important role for IP3R-mediated Ca2+ release in VSMCs in regulating vascular contractility and hypertension.

Authors

Qingsong Lin, Guiling Zhao, Xi Fang, Xiaohong Peng, Huayuan Tang, Hong Wang, Ran Jing, Jie Liu, W. Jonathan Lederer, Ju Chen, Kunfu Ouyang

×

Regulatory T cell transfer ameliorates lymphedema and promotes lymphatic vessel function
Epameinondas Gousopoulos, … , Lothar C. Dieterich, Michael Detmar
Epameinondas Gousopoulos, … , Lothar C. Dieterich, Michael Detmar
Published October 6, 2016
Citation Information: JCI Insight. 2016;1(16):e89081. https://doi.org/10.1172/jci.insight.89081.
View: Text | PDF

Regulatory T cell transfer ameliorates lymphedema and promotes lymphatic vessel function

  • Text
  • PDF
Abstract

Secondary lymphedema is a common postcancer treatment complication, but the underlying pathological processes are poorly understood and no curative treatment exists. To investigate lymphedema pathomechanisms, a top-down approach was applied, using genomic data and validating the role of a single target. RNA sequencing of lymphedematous mouse skin indicated upregulation of many T cell–related networks, and indeed depletion of CD4+ cells attenuated lymphedema. The significant upregulation of Foxp3, a transcription factor specifically expressed by regulatory T cells (Tregs), along with other Treg-related genes, implied a potential role of Tregs in lymphedema. Indeed, increased infiltration of Tregs was identified in mouse lymphedematous skin and in human lymphedema specimens. To investigate the role of Tregs during disease progression, loss-of-function and gain-of-function studies were performed. Depletion of Tregs in transgenic mice with Tregs expressing the primate diphtheria toxin receptor and green fluorescent protein (Foxp3-DTR-GFP) mice led to exacerbated edema, concomitant with increased infiltration of immune cells and a mixed TH1/TH2 cytokine profile. Conversely, expansion of Tregs using IL-2/anti–IL-2 mAb complexes significantly reduced lymphedema development. Therapeutic application of adoptively transferred Tregs upon lymphedema establishment reversed all of the major hallmarks of lymphedema, including edema, inflammation, and fibrosis, and also promoted lymphatic drainage function. Collectively, our results reveal that Treg application constitutes a potential new curative treatment modality for lymphedema.

Authors

Epameinondas Gousopoulos, Steven T. Proulx, Samia B. Bachmann, Jeannette Scholl, Dimitris Dionyssiou, Efterpi Demiri, Cornelia Halin, Lothar C. Dieterich, Michael Detmar

×

Vascular mineralocorticoid receptor regulates microRNA-155 to promote vasoconstriction and rising blood pressure with aging
Jennifer J. DuPont, … , Michael A. Hill, Iris Z. Jaffe
Jennifer J. DuPont, … , Michael A. Hill, Iris Z. Jaffe
Published September 8, 2016
Citation Information: JCI Insight. 2016;1(14):e88942. https://doi.org/10.1172/jci.insight.88942.
View: Text | PDF

Vascular mineralocorticoid receptor regulates microRNA-155 to promote vasoconstriction and rising blood pressure with aging

  • Text
  • PDF
Abstract

Hypertension is nearly universal yet poorly controlled in the elderly despite proven benefits of intensive treatment. Mice lacking mineralocorticoid receptors in smooth muscle cells (SMC-MR-KO) are protected from rising blood pressure (BP) with aging, despite normal renal function. Vasoconstriction is attenuated in aged SMC-MR-KO mice, thus they were used to explore vascular mechanisms that may contribute to hypertension with aging. MicroRNA (miR) profiling identified miR-155 as the most down-regulated miR with vascular aging in MR-intact but not SMC-MR-KO mice. The aging-associated decrease in miR-155 in mesenteric resistance vessels was associated with increased mRNA abundance of MR and of predicted miR-155 targets Cav1.2 (L-type calcium channel (LTCC) subunit) and angiotensin type-1 receptor (AgtR1). SMC-MR-KO mice lacked these aging-associated vascular gene expression changes. In HEK293 cells, MR repressed miR-155 promoter activity. In cultured SMCs, miR-155 decreased Cav1.2 and AgtR1 mRNA. Compared to MR-intact littermates, aged SMC-MR-KO mice had decreased systolic BP, myogenic tone, SMC LTCC current, mesenteric vessel calcium influx, LTCC-induced vasoconstriction and angiotensin II-induced vasoconstriction and oxidative stress. Restoration of miR-155 specifically in SMCs of aged MR-intact mice decreased Cav1.2 and AgtR1 mRNA and attenuated LTCC-mediated and angiotensin II-induced vasoconstriction and oxidative stress. Finally, in a trial of MR blockade in elderly humans, changes in serum miR-155 predicted the BP treatment response. Thus, SMC-MR regulation of miR-155, Cav1.2 and AgtR1 impacts vasoconstriction with aging. This novel mechanism identifies potential new treatment strategies and biomarkers to improve and individualize antihypertensive therapy in the elderly.

Authors

Jennifer J. DuPont, Amy McCurley, Ana P. Davel, Joseph McCarthy, Shawn B. Bender, Kwangseok Hong, Yan Yang, Jeung-Ki Yoo, Mark Aronovitz, Wendy E. Baur, Demetra D. Christou, Michael A. Hill, Iris Z. Jaffe

×

ISL1 cardiovascular progenitor cells for cardiac repair after myocardial infarction
Oscar Bartulos, … , Jordan S. Pober, Yibing Qyang
Oscar Bartulos, … , Jordan S. Pober, Yibing Qyang
Published July 7, 2016
Citation Information: JCI Insight. 2016;1(10):e80920. https://doi.org/10.1172/jci.insight.80920.
View: Text | PDF

ISL1 cardiovascular progenitor cells for cardiac repair after myocardial infarction

  • Text
  • PDF
Abstract

Cardiovascular progenitor cells (CPCs) expressing the ISL1-LIM–homeodomain transcription factor contribute developmentally to cardiomyocytes in all 4 chambers of the heart. Here, we show that ISL1-CPCs can be applied to myocardial regeneration following injury. We used a rapid 3D methylcellulose approach to form murine and human ISL1-CPC spheroids that engrafted after myocardial infarction in murine hearts, where they differentiated into cardiomyocytes and endothelial cells, integrating into the myocardium and forming new blood vessels. ISL1-CPC spheroid–treated mice exhibited reduced infarct area and increased blood vessel formation compared with control animals. Moreover, left ventricular (LV) contractile function was significantly better in mice transplanted with ISL1-CPCs 4 weeks after injury than that in control animals. These results provide proof-of-concept of a cardiac repair strategy employing ISL1-CPCs that, based on our previous lineage-tracing studies, are committed to forming heart tissue, in combination with a robust methylcellulose spheroid–based delivery approach.

Authors

Oscar Bartulos, Zhen Wu Zhuang, Yan Huang, Nicole Mikush, Carol Suh, Alda Bregasi, Lin Wang, William Chang, Diane S. Krause, Lawrence H. Young, Jordan S. Pober, Yibing Qyang

×

Prohibitin/annexin 2 interaction regulates fatty acid transport in adipose tissue
Ahmad Salameh, … , Wadih Arap, Mikhail G. Kolonin
Ahmad Salameh, … , Wadih Arap, Mikhail G. Kolonin
Published July 7, 2016
Citation Information: JCI Insight. 2016;1(10):e86351. https://doi.org/10.1172/jci.insight.86351.
View: Text | PDF

Prohibitin/annexin 2 interaction regulates fatty acid transport in adipose tissue

  • Text
  • PDF
Abstract

We have previously identified prohibitin (PHB) and annexin A2 (ANX2) as proteins interacting on the surface of vascular endothelial cells in white adipose tissue (WAT) of humans and mice. Here, we demonstrate that ANX2 and PHB also interact in adipocytes. Mice lacking ANX2 have normal WAT vascularization, adipogenesis, and glucose metabolism but display WAT hypotrophy due to reduced fatty acid uptake by WAT endothelium and adipocytes. By using cell culture systems in which ANX2/PHB binding is disrupted either genetically or through treatment with a blocking peptide, we show that fatty acid transport efficiency relies on this protein complex. We also provide evidence that the interaction between ANX2 and PHB mediates fatty acid transport from the endothelium into adipocytes. Moreover, we demonstrate that ANX2 and PHB form a complex with the fatty acid transporter CD36. Finally, we show that the colocalization of PHB and CD36 on adipocyte surface is induced by extracellular fatty acids. Together, our results suggest that an unrecognized biochemical interaction between ANX2 and PHB regulates CD36-mediated fatty acid transport in WAT, thus revealing a new potential pathway for intervention in metabolic diseases.

Authors

Ahmad Salameh, Alexes C. Daquinag, Daniela I. Staquicini, Zhiqiang An, Katherine A. Hajjar, Renata Pasqualini, Wadih Arap, Mikhail G. Kolonin

×

Distal vessel stiffening is an early and pivotal mechanobiological regulator of vascular remodeling and pulmonary hypertension
Fei Liu, … , Daniel J. Tschumperlin, Laura E. Fredenburgh
Fei Liu, … , Daniel J. Tschumperlin, Laura E. Fredenburgh
Published June 2, 2016
Citation Information: JCI Insight. 2016;1(8):e86987. https://doi.org/10.1172/jci.insight.86987.
View: Text | PDF

Distal vessel stiffening is an early and pivotal mechanobiological regulator of vascular remodeling and pulmonary hypertension

  • Text
  • PDF
Abstract

Pulmonary arterial (PA) stiffness is associated with increased mortality in patients with pulmonary hypertension (PH); however, the role of PA stiffening in the pathogenesis of PH remains elusive. Here, we show that distal vascular matrix stiffening is an early mechanobiological regulator of experimental PH. We identify cyclooxygenase-2 (COX-2) suppression and corresponding reduction in prostaglandin production as pivotal regulators of stiffness-dependent vascular cell activation. Atomic force microscopy microindentation demonstrated early PA stiffening in experimental PH and human lung tissue. Pulmonary artery smooth muscle cells (PASMC) grown on substrates with the stiffness of remodeled PAs showed increased proliferation, decreased apoptosis, exaggerated contraction, enhanced matrix deposition, and reduced COX-2–derived prostanoid production compared with cells grown on substrates approximating normal PA stiffness. Treatment with a prostaglandin I2 analog abrogated monocrotaline-induced PA stiffening and attenuated stiffness-dependent increases in proliferation, matrix deposition, and contraction in PASMC. Our results suggest a pivotal role for early PA stiffening in PH and demonstrate the therapeutic potential of interrupting mechanobiological feedback amplification of vascular remodeling in experimental PH.

Authors

Fei Liu, Christina Mallarino Haeger, Paul B. Dieffenbach, Delphine Sicard, Izabela Chrobak, Anna Maria F. Coronata, Margarita M. Suárez Velandia, Sally Vitali, Romain A. Colas, Paul C. Norris, Aleksandar Marinković, Xiaoli Liu, Jun Ma, Chase D. Rose, Seon-Jin Lee, Suzy A.A. Comhair, Serpil C. Erzurum, Jacob D. McDonald, Charles N. Serhan, Stephen R. Walsh, Daniel J. Tschumperlin, Laura E. Fredenburgh

×

Protein methionine oxidation augments reperfusion injury in acute ischemic stroke
Sean X. Gu, … , Anil K. Chauhan, Steven R. Lentz
Sean X. Gu, … , Anil K. Chauhan, Steven R. Lentz
Published May 19, 2016
Citation Information: JCI Insight. 2016;1(7):e86460. https://doi.org/10.1172/jci.insight.86460.
View: Text | PDF

Protein methionine oxidation augments reperfusion injury in acute ischemic stroke

  • Text
  • PDF
Abstract

Reperfusion injury can exacerbate tissue damage in ischemic stroke, but little is known about the mechanisms linking ROS to stroke severity. Here, we tested the hypothesis that protein methionine oxidation potentiates NF-κB activation and contributes to cerebral ischemia/reperfusion injury. We found that overexpression of methionine sulfoxide reductase A (MsrA), an antioxidant enzyme that reverses protein methionine oxidation, attenuated ROS-augmented NF-κB activation in endothelial cells, in part, by protecting against the oxidation of methionine residues in the regulatory domain of calcium/calmodulin-dependent protein kinase II (CaMKII). In a murine model, MsrA deficiency resulted in increased NF-κB activation and neutrophil infiltration, larger infarct volumes, and more severe neurological impairment after transient cerebral ischemia/reperfusion injury. This phenotype was prevented by inhibition of NF-κB or CaMKII. MsrA-deficient mice also exhibited enhanced leukocyte rolling and upregulation of E-selectin, an endothelial NF-κB–dependent adhesion molecule known to contribute to neurovascular inflammation in ischemic stroke. Finally, bone marrow transplantation experiments demonstrated that the neuroprotective effect was mediated by MsrA expressed in nonhematopoietic cells. These findings suggest that protein methionine oxidation in nonmyeloid cells is a key mechanism of postischemic oxidative injury mediated by NF-κB activation, leading to neutrophil recruitment and neurovascular inflammation in acute ischemic stroke.

Authors

Sean X. Gu, Ilya O. Blokhin, Katina M. Wilson, Nirav Dhanesha, Prakash Doddapattar, Isabella M. Grumbach, Anil K. Chauhan, Steven R. Lentz

×
  • ← Previous
  • 1
  • 2
  • …
  • 15
  • 16
  • 17
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts