Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Intravascular hemolysis activates complement via cell-free heme and heme-loaded microvesicles
Nicolas S. Merle, … , Olivier P. Blanc-Brude, Lubka T. Roumenina
Nicolas S. Merle, … , Olivier P. Blanc-Brude, Lubka T. Roumenina
Published June 21, 2018
Citation Information: JCI Insight. 2018;3(12):e96910. https://doi.org/10.1172/jci.insight.96910.
View: Text | PDF
Research Article Inflammation Vascular biology

Intravascular hemolysis activates complement via cell-free heme and heme-loaded microvesicles

  • Text
  • PDF
Abstract

In hemolytic diseases, such as sickle cell disease (SCD), intravascular hemolysis results in the release of hemoglobin, heme, and heme-loaded membrane microvesicles in the bloodstream. Intravascular hemolysis is thus associated with inflammation and organ injury. Complement system can be activated by heme in vitro. We investigated the mechanisms by which hemolysis and red blood cell (RBC) degradation products trigger complement activation in vivo. In kidney biopsies of SCD nephropathy patients and a mouse model with SCD, we detected tissue deposits of complement C3 and C5b-9. Moreover, drug-induced intravascular hemolysis or injection of heme or hemoglobin in mice triggered C3 deposition, primarily in kidneys. Renal injury markers (Kim-1, NGAL) were attenuated in C3–/– hemolytic mice. RBC degradation products, such as heme-loaded microvesicles and heme, induced alternative and terminal complement pathway activation in sera and on endothelial surfaces, in contrast to hemoglobin. Heme triggered rapid P selectin, C3aR, and C5aR expression and downregulated CD46 on endothelial cells. Importantly, complement deposition was attenuated in vivo and in vitro by heme scavenger hemopexin. In conclusion, we demonstrate that intravascular hemolysis triggers complement activation in vivo, encouraging further studies on its role in SCD nephropathy. Conversely, heme inhibition using hemopexin may provide a novel therapeutic opportunity to limit complement activation in hemolytic diseases.

Authors

Nicolas S. Merle, Anne Grunenwald, Helena Rajaratnam, Viviane Gnemmi, Marie Frimat, Marie-Lucile Figueres, Samantha Knockaert, Sanah Bouzekri, Dominique Charue, Remi Noe, Tania Robe-Rybkine, Marie Le-Hoang, Nathan Brinkman, Thomas Gentinetta, Monika Edler, Sara Petrillo, Emanuela Tolosano, Sylvia Miescher, Sylvain Le Jeune, Pascal Houillier, Sophie Chauvet, Marion Rabant, Jordan D. Dimitrov, Veronique Fremeaux-Bacchi, Olivier P. Blanc-Brude, Lubka T. Roumenina

×

Full Text PDF

Download PDF (7.04 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts