Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Therapeutics

  • 315 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 5
  • 6
  • 7
  • …
  • 31
  • 32
  • Next →
Sanglifehrin A mitigates multi-organ fibrosis by targeting the collagen chaperone cyclophilin B
Hope A. Flaxman, Maria-Anna Chrysovergi, Hongwei Han, Farah Kabir, Rachael T. Lister, Chia-Fu Chang, Robert Yvon, Katharine E. Black, Andreas Weigert, Rajkumar Savai, Alejandro Egea-Zorrilla, Ana Pardo-Saganta, David Lagares, Christina M. Woo
Hope A. Flaxman, Maria-Anna Chrysovergi, Hongwei Han, Farah Kabir, Rachael T. Lister, Chia-Fu Chang, Robert Yvon, Katharine E. Black, Andreas Weigert, Rajkumar Savai, Alejandro Egea-Zorrilla, Ana Pardo-Saganta, David Lagares, Christina M. Woo
View: Text | PDF

Sanglifehrin A mitigates multi-organ fibrosis by targeting the collagen chaperone cyclophilin B

  • Text
  • PDF
Abstract

Pathological deposition and crosslinking of collagen type I by activated myofibroblasts drives progressive tissue fibrosis. Therapies that inhibit collagen synthesis have potential as anti-fibrotic agents. We identify the collagen chaperone cyclophilin B as a major cellular target of the natural product sanglifehrin A (SfA) using photo-affinity labeling and chemical proteomics. Mechanistically, SfA inhibits and induces the secretion of cyclophilin B from the endoplasmic reticulum (ER) and prevents TGF-β1–activated myofibroblasts from synthesizing and secreting collagen type I in vitro, without inducing ER stress, affecting collagen type I mRNA transcription, myofibroblast migration, contractility, or TGF-β1 signaling. In vivo, SfA induced cyclophilin B secretion in preclinical models of fibrosis, thereby inhibiting collagen synthesis from fibrotic fibroblasts and mitigating the development of lung and skin fibrosis in mice. Ex vivo, SfA induces cyclophilin B secretion and inhibits collagen type I secretion from fibrotic human lung fibroblasts and samples from patients with idiopathic pulmonary fibrosis (IPF). Taken together, we provide chemical, molecular, functional, and translational evidence for demonstrating direct anti-fibrotic activities of SfA in preclinical and human ex vivo fibrotic models. Our results identify the cellular target of SfA, the collagen chaperone cyclophilin B, as a mechanistic target for the treatment of organ fibrosis.

Authors

Hope A. Flaxman, Maria-Anna Chrysovergi, Hongwei Han, Farah Kabir, Rachael T. Lister, Chia-Fu Chang, Robert Yvon, Katharine E. Black, Andreas Weigert, Rajkumar Savai, Alejandro Egea-Zorrilla, Ana Pardo-Saganta, David Lagares, Christina M. Woo

×

A dual-acting DNASE1/DNASE1L3 biologic prevents autoimmunity and death in genetic and induced lupus models
Paul R. Stabach, Dominique Sims, Eduardo Gomez-Bañuelos, Sandra Zehentmeier, Kris Dammen-Brower, Andrew Bernhisel, Sophia E. Kujawski, Sam G. Lopez, Michelle Petri, Daniel W. Goldman, Ethan R. Lester, Quan Le, Tayyaba Ishaq, Hana Kim, Shivani Srivastava, Deepika Kumar, Joao P. Pereira, Kevin J. Yarema, Fotios Koumpouras, Felipe Andrade, Demetrios T. Braddock
Paul R. Stabach, Dominique Sims, Eduardo Gomez-Bañuelos, Sandra Zehentmeier, Kris Dammen-Brower, Andrew Bernhisel, Sophia E. Kujawski, Sam G. Lopez, Michelle Petri, Daniel W. Goldman, Ethan R. Lester, Quan Le, Tayyaba Ishaq, Hana Kim, Shivani Srivastava, Deepika Kumar, Joao P. Pereira, Kevin J. Yarema, Fotios Koumpouras, Felipe Andrade, Demetrios T. Braddock
View: Text | PDF

A dual-acting DNASE1/DNASE1L3 biologic prevents autoimmunity and death in genetic and induced lupus models

  • Text
  • PDF
Abstract

A defining feature of systemic lupus erythematosus (SLE) is loss of tolerance to self-DNA, and DNASE1L3 deficiency, the main enzyme responsible for chromatin degradation in blood, is also associated with SLE. This association includes an ultra-rare pediatric population with DNASE1L3 deficiency who develop SLE, adult patients with loss of function variants of DNASE1L3 who are at a higher risk for SLE, and patients with sporadic SLE who have neutralizing autoantibodies to DNASE1L3. To mitigate the pathogenic effects of inherited and acquired DNASE1L3 deficiencies, we engineered a long-acting enzyme biologic with dual DNASE1/DNASE1L3 activity that is resistant to DNASE1 and DNASE1L3 inhibitors. Notably, we found that the biologic prevented the development of lupus in Dnase1–/–/Dnase1L3–/– double knockout mice and rescued animals from death in pristane-induced lupus. Finally, we confirmed that the human isoform of the enzyme biologic was not recognized by autoantibodies in SLE and efficiently degrades genomic and mitochondrial cell free DNA, as well as microparticle DNA, in SLE plasma. Our findings suggest that autoimmune diseases characterized by aberrant DNA accumulation, such as SLE, can be effectively treated with a replacement DNASE tailored to bypass pathogenic mechanisms, both genetic and acquired, that restrict DNASE1L3 activity.

Authors

Paul R. Stabach, Dominique Sims, Eduardo Gomez-Bañuelos, Sandra Zehentmeier, Kris Dammen-Brower, Andrew Bernhisel, Sophia E. Kujawski, Sam G. Lopez, Michelle Petri, Daniel W. Goldman, Ethan R. Lester, Quan Le, Tayyaba Ishaq, Hana Kim, Shivani Srivastava, Deepika Kumar, Joao P. Pereira, Kevin J. Yarema, Fotios Koumpouras, Felipe Andrade, Demetrios T. Braddock

×

4EBP1-mediated SLC7A11 protein synthesis restrains ferroptosis triggered by MEK inhibitors in advanced ovarian cancer
Jiaxin Yin, Jianfeng Chen, Jing Han Hong, Yulin Huang, Rong Xiao, Shini Liu, Peng Deng, Yichen Sun, Kelila Xin Ye Chai, Xian Zeng, Jason Yongsheng Chan, Peiyong Guan, Yali Wang, Peili Wang, Chongjie Tong, Qiang Yu, Xiaojun Xia, Choon Kiat Ong, Bin Tean Teh, Ying Xiong, Jing Tan
Jiaxin Yin, Jianfeng Chen, Jing Han Hong, Yulin Huang, Rong Xiao, Shini Liu, Peng Deng, Yichen Sun, Kelila Xin Ye Chai, Xian Zeng, Jason Yongsheng Chan, Peiyong Guan, Yali Wang, Peili Wang, Chongjie Tong, Qiang Yu, Xiaojun Xia, Choon Kiat Ong, Bin Tean Teh, Ying Xiong, Jing Tan
View: Text | PDF

4EBP1-mediated SLC7A11 protein synthesis restrains ferroptosis triggered by MEK inhibitors in advanced ovarian cancer

  • Text
  • PDF
Abstract

Loss of ferroptosis contributes to the development of human cancer, and restoration of ferroptosis has been demonstrated as a potential therapeutic strategy in cancer treatment. However, the mechanisms of how ferroptosis escape contributes to ovarian cancer (OV) development are not well elucidated. Here we show that ferroptosis negative regulation (FNR) signatures correlated with the tumorigenesis of OV and were associated with poor prognosis, suggesting that restoration of ferroptosis represents a potential therapeutic strategy in OV. High throughput drug screening with a kinase inhibitor library identified MEK inhibitors as ferroptosis inducers in OV cells. We further demonstrated that MEK inhibitor resistant OV cells were less vulnerable to trametinib-induced ferroptosis. Mechanistically, mTOR/4EBP1 signaling promoted SLC7A11 protein synthesis, leading to ferroptosis inhibition in MEK inhibitor resistant cells. Dual inhibition of MEK and mTOR/4EBP1 signaling restrained the protein synthesis of SLC7A11 via suppression of the mTOR-4EBP1 activity to reactivate ferroptosis in resistant cells. Together, these findings provide a promising therapeutic option for OV treatment through ferroptosis restoration by the combined inhibition of MEK and mTOR/4EBP1 pathways.

Authors

Jiaxin Yin, Jianfeng Chen, Jing Han Hong, Yulin Huang, Rong Xiao, Shini Liu, Peng Deng, Yichen Sun, Kelila Xin Ye Chai, Xian Zeng, Jason Yongsheng Chan, Peiyong Guan, Yali Wang, Peili Wang, Chongjie Tong, Qiang Yu, Xiaojun Xia, Choon Kiat Ong, Bin Tean Teh, Ying Xiong, Jing Tan

×

Lentivirus-mediated gene therapy corrects ribosomal biogenesis and shows promise for Diamond Blackfan anemia
Yari Giménez, Manuel Palacios, Rebeca Sánchez-Domínguez, Christiane Zorbas, Jorge Peral, Alexander Puzik, Laura Ugalde, Omaira Alberquilla, Mariela Villanueva, Paula Río, Eva Gálvez, Lydie Da Costa, Marion Strullu, Albert Catala, Anna Ruiz-Llobet, Jose Carlos Segovia, Julián Sevilla, Brigitte Strahm, Charlotte M. Niemeyer, Cristina Beléndez, Thierry Leblanc, Denis L.J. Lafontaine, Juan Bueren, Susana Navarro
Yari Giménez, Manuel Palacios, Rebeca Sánchez-Domínguez, Christiane Zorbas, Jorge Peral, Alexander Puzik, Laura Ugalde, Omaira Alberquilla, Mariela Villanueva, Paula Río, Eva Gálvez, Lydie Da Costa, Marion Strullu, Albert Catala, Anna Ruiz-Llobet, Jose Carlos Segovia, Julián Sevilla, Brigitte Strahm, Charlotte M. Niemeyer, Cristina Beléndez, Thierry Leblanc, Denis L.J. Lafontaine, Juan Bueren, Susana Navarro
View: Text | PDF

Lentivirus-mediated gene therapy corrects ribosomal biogenesis and shows promise for Diamond Blackfan anemia

  • Text
  • PDF
Abstract

This study lays the groundwork for future lentivirus-mediated gene therapy in patients with Diamond Blackfan anemia (DBA) caused by mutations in ribosomal protein S19 (RPS19), showing evidence of a new safe and effective therapy. The data show that, unlike patients with Fanconi anemia (FA), the hematopoietic stem cell (HSC) reservoir of patients with DBA was not significantly reduced, suggesting that collection of these cells should not constitute a remarkable restriction for DBA gene therapy. Subsequently, 2 clinically applicable lentiviral vectors were developed. In the former lentiviral vector, PGK.CoRPS19 LV, a codon-optimized version of RPS19 was driven by the phosphoglycerate kinase promoter (PGK) already used in different gene therapy trials, including FA gene therapy. In the latter one, EF1α.CoRPS19 LV, RPS19 expression was driven by the elongation factor alpha short promoter, EF1α(s). Preclinical experiments showed that transduction of DBA patient CD34+ cells with the PGK.CoRPS19 LV restored erythroid differentiation, and demonstrated the long-term repopulating properties of corrected DBA CD34+ cells, providing evidence of improved erythroid maturation. Concomitantly, long-term restoration of ribosomal biogenesis was verified using a potentially novel method applicable to patients’ blood cells, based on ribosomal RNA methylation analyses. Finally, in vivo safety studies and proviral insertion site analyses showed that lentivirus-mediated gene therapy was nontoxic.

Authors

Yari Giménez, Manuel Palacios, Rebeca Sánchez-Domínguez, Christiane Zorbas, Jorge Peral, Alexander Puzik, Laura Ugalde, Omaira Alberquilla, Mariela Villanueva, Paula Río, Eva Gálvez, Lydie Da Costa, Marion Strullu, Albert Catala, Anna Ruiz-Llobet, Jose Carlos Segovia, Julián Sevilla, Brigitte Strahm, Charlotte M. Niemeyer, Cristina Beléndez, Thierry Leblanc, Denis L.J. Lafontaine, Juan Bueren, Susana Navarro

×

Synergism of dual AAV gene therapy and rapamycin rescues GSDIII phenotype in muscle and liver
Louisa Jauze, Mallaury Vie, Quentin Miagoux, Lucille Rossiaud, Patrice Vidal, Valle Montalvo-Romeral, Hanadi Saliba, Margot Jarrige, Helene Polveche, Justine Nozi, Pierre-Romain Le Brun, Luca Bocchialini, Amandine Francois, Jeremie Cosette, Jérémy Rouillon, Fanny Collaud, Fanny Bordier, Emilie Bertil-Froidevaux, Christophe Georger, Laetitia Van Wittenberghe, Adeline Miranda, Nathalie Daniele, David Gross, Lucile Hoch, Xavier Nissan, Giuseppe Ronzitti
Louisa Jauze, Mallaury Vie, Quentin Miagoux, Lucille Rossiaud, Patrice Vidal, Valle Montalvo-Romeral, Hanadi Saliba, Margot Jarrige, Helene Polveche, Justine Nozi, Pierre-Romain Le Brun, Luca Bocchialini, Amandine Francois, Jeremie Cosette, Jérémy Rouillon, Fanny Collaud, Fanny Bordier, Emilie Bertil-Froidevaux, Christophe Georger, Laetitia Van Wittenberghe, Adeline Miranda, Nathalie Daniele, David Gross, Lucile Hoch, Xavier Nissan, Giuseppe Ronzitti
View: Text | PDF

Synergism of dual AAV gene therapy and rapamycin rescues GSDIII phenotype in muscle and liver

  • Text
  • PDF
Abstract

Glycogen storage disease type III (GSDIII) is a rare metabolic disorder due to glycogen debranching enzyme (GDE) deficiency. Reduced GDE activity leads to pathological glycogen accumulation responsible for impaired hepatic metabolism and muscle weakness. To date, there is no curative treatment for GSDIII. We previously reported that two distinct dual AAV vectors encoding for GDE were needed to correct liver and muscle in a GSDIII mouse model. Here, we evaluated the efficacy of rapamycin in combination with AAV gene therapy. Simultaneous treatment with rapamycin and a novel dual AAV vector expressing GDE in the liver and muscle resulted in a synergic effect demonstrated at biochemical and functional levels. Transcriptomic analysis confirmed synergy and suggested a putative mechanism based on the correction of lysosomal impairment. In GSDIII mice liver, dual AAV gene therapy combined with rapamycin reduced the impact of the immune response to AAV observed in this disease model. These data provide proof of concept of an approach exploiting the combination of gene therapy and rapamycin to improve efficacy and safety and support clinical translation.

Authors

Louisa Jauze, Mallaury Vie, Quentin Miagoux, Lucille Rossiaud, Patrice Vidal, Valle Montalvo-Romeral, Hanadi Saliba, Margot Jarrige, Helene Polveche, Justine Nozi, Pierre-Romain Le Brun, Luca Bocchialini, Amandine Francois, Jeremie Cosette, Jérémy Rouillon, Fanny Collaud, Fanny Bordier, Emilie Bertil-Froidevaux, Christophe Georger, Laetitia Van Wittenberghe, Adeline Miranda, Nathalie Daniele, David Gross, Lucile Hoch, Xavier Nissan, Giuseppe Ronzitti

×

Circadian transcriptome of pancreatic adenocarcinoma unravels chronotherapeutic targets
Deepak Sharma, Darbaz Adnan, Mostafa K. Abdel-Reheem, Ron C. Anafi, Daniel D. Leary, Faraz Bishehsari
Deepak Sharma, Darbaz Adnan, Mostafa K. Abdel-Reheem, Ron C. Anafi, Daniel D. Leary, Faraz Bishehsari
View: Text | PDF

Circadian transcriptome of pancreatic adenocarcinoma unravels chronotherapeutic targets

  • Text
  • PDF
Abstract

Pancreatic ductal adenocarcinoma (PDA) is a lethal cancer characterized by a poor outcome and an increasing incidence. A significant majority (>80%) of newly diagnosed cases are deemed unresectable, leaving chemotherapy as the sole viable option, though with only moderate success. This necessitates the identification of improved therapeutic options for PDA. We hypothesized that there are temporal variations in cancer-relevant processes within PDA tumors, offering insights into the optimal timing of drug administration — a concept termed chronotherapy. In this study, we explored the presence of the circadian transcriptome in PDA using patient-derived organoids and validated these findings by comparing PDA data from The Cancer Genome Atlas with noncancerous healthy pancreas data from GTEx. Several PDA-associated pathways (cell cycle, stress response, Rho GTPase signaling) and cancer driver hub genes (EGFR and JUN) exhibited a cancer-specific rhythmic pattern intricately linked to the circadian clock. Through the integration of multiple functional measurements for rhythmic cancer driver genes, we identified top chronotherapy targets and validated key findings in molecularly divergent pancreatic cancer cell lines. Testing the chemotherapeutic efficacy of clinically relevant drugs further revealed temporal variations that correlated with drug-target cycling. Collectively, our study unravels the PDA circadian transcriptome and highlights a potential approach for optimizing chrono-chemotherapeutic efficacy.

Authors

Deepak Sharma, Darbaz Adnan, Mostafa K. Abdel-Reheem, Ron C. Anafi, Daniel D. Leary, Faraz Bishehsari

×

Potential limitations of micro-dystrophin gene therapy for Duchenne muscular dystrophy
Cora C. Hart, Young il Lee, Jun Xie, Guangping Gao, Brian L. Lin, David W. Hammers, H. Lee Sweeney
Cora C. Hart, Young il Lee, Jun Xie, Guangping Gao, Brian L. Lin, David W. Hammers, H. Lee Sweeney
View: Text | PDF

Potential limitations of micro-dystrophin gene therapy for Duchenne muscular dystrophy

  • Text
  • PDF
Abstract

Clinical trials delivering high doses of adeno-associated viruses (AAVs) expressing truncated dystrophin molecules (micro-dystrophins) are underway for individuals with Duchenne muscular dystrophy (DMD). We examined the efficiency and efficacy of this strategy with four micro-dystrophin constructs (three in clinical trials and a variant of the largest clinical construct), in a severe mouse model of DMD, using doses of AAV comparable to those used in the clinical trials. We achieved high levels of micro-dystrophin expression in striated muscle with cardiac expression ~10 fold higher than that observed in skeletal muscle. Significant, albeit incomplete, correction of the skeletal muscle disease was observed. Surprisingly, a lethal acceleration of cardiac disease progression occurred with two of the micro-dystrophins. The detrimental impact on the heart appears to be caused by the high levels of micro-dystrophin resulting in variable competition (dependent on the design of the micro-dystrophin) between micro-dystrophin and utrophin at the cardiomyocyte membrane. There may also be a contribution from an overloading of protein degradation. The significance of these observations for patients currently being treated with AAV-micro-dystrophin therapies is unclear since the levels of expression being achieved in the DMD hearts are unknown. However, it suggests that micro-dystrophin treatments need to avoid excessively high levels of expression in the heart and cardiac function should be carefully monitored in these patients.

Authors

Cora C. Hart, Young il Lee, Jun Xie, Guangping Gao, Brian L. Lin, David W. Hammers, H. Lee Sweeney

×

Multi-omics characterization of esophageal squamous cell carcinoma identifies molecular subtypes and therapeutic targets
Dengyun Zhao, Yaping Guo, Huifang Wei, Xuechao Jia, Yafei Zhi, Guiliang He, Wenna Nie, Limeng Huang, Penglei Wang, Kyle Vaughn Laster, Zhicai Liu, Jinwu Wang, Mee-Hyun Lee, Zigang Dong, Kangdong Liu
Dengyun Zhao, Yaping Guo, Huifang Wei, Xuechao Jia, Yafei Zhi, Guiliang He, Wenna Nie, Limeng Huang, Penglei Wang, Kyle Vaughn Laster, Zhicai Liu, Jinwu Wang, Mee-Hyun Lee, Zigang Dong, Kangdong Liu
View: Text | PDF

Multi-omics characterization of esophageal squamous cell carcinoma identifies molecular subtypes and therapeutic targets

  • Text
  • PDF
Abstract

Esophageal squamous cell carcinoma (ESCC) is the predominant form of esophageal cancer and is characterized by an unfavorable prognosis. To elucidate the distinct molecular alterations in ESCC and investigate therapeutic targets, we performed a comprehensive analysis of transcriptomic, proteomic, and phosphoproteomic data derived from 60 paired treatment-naive ESCC and adjacent non-tumor tissue samples. Additionally, we conducted a correlation analysis to describe the regulatory relationship between transcriptomic and proteomic processes, revealing alterations in key metabolic pathways. Unsupervised clustering analysis of the proteomic data stratified ESCC patients into three subtypes with different molecular characteristics and clinical outcomes. Notably, subtype III exhibited the worst prognosis and enrichment in proteins associated with malignant processes, including glycolysis and DNA repair pathways. Furthermore, translocase of inner mitochondrial membrane domain containing 1 (TIMMDC1) was validated as a potential prognostic molecule for ESCC. Moreover, integrated kinase-substrate network analysis using the phosphoproteome nominated candidate kinases as potential targets. In vitro and in vivo experiments further confirmed casein kinase II subunit alpha (CSNK2A1) as a potential kinase target for ESCC. These underlying data represent a valuable resource for researchers, which may provide better insights into the biology and treatment of ESCC.

Authors

Dengyun Zhao, Yaping Guo, Huifang Wei, Xuechao Jia, Yafei Zhi, Guiliang He, Wenna Nie, Limeng Huang, Penglei Wang, Kyle Vaughn Laster, Zhicai Liu, Jinwu Wang, Mee-Hyun Lee, Zigang Dong, Kangdong Liu

×

Pyrimidine depletion enhances targeted and immune therapy combinations in acute myeloid leukemia
Ola A. Elgamal, Sydney Fobare, Sandip Vibhute, Abeera Mehmood, Dennis C. Vroom, Mariah L. Johnson, Blaise Stearns, James R. Lerma, Jean Truxall, Emily Stahl, Bridget Carmichael, Shelley J. Orwick, Alice S. Mims, Emily Curran, Ramasamy Santhanam, Susheela Tridandapani, Mitch A. Phelps, Zhiliang Xie, Christopher C. Coss, Sharyn D. Baker, Jeffrey Patrick, Janel K. Ezzell, Jayesh Rai, Jianmin Pan, Shesh N. Rai, Cody Stillwell, Mark Wunderlich, Mouad Abdulrahim, Thomas E. Goodwin, Gerard Hilinski, Chad E. Bennett, Erin Hertlein, John C. Byrd
Ola A. Elgamal, Sydney Fobare, Sandip Vibhute, Abeera Mehmood, Dennis C. Vroom, Mariah L. Johnson, Blaise Stearns, James R. Lerma, Jean Truxall, Emily Stahl, Bridget Carmichael, Shelley J. Orwick, Alice S. Mims, Emily Curran, Ramasamy Santhanam, Susheela Tridandapani, Mitch A. Phelps, Zhiliang Xie, Christopher C. Coss, Sharyn D. Baker, Jeffrey Patrick, Janel K. Ezzell, Jayesh Rai, Jianmin Pan, Shesh N. Rai, Cody Stillwell, Mark Wunderlich, Mouad Abdulrahim, Thomas E. Goodwin, Gerard Hilinski, Chad E. Bennett, Erin Hertlein, John C. Byrd
View: Text | PDF

Pyrimidine depletion enhances targeted and immune therapy combinations in acute myeloid leukemia

  • Text
  • PDF
Abstract

Acute myeloid leukemia (AML) is a fatal disease characterized by the accumulation of undifferentiated myeloblasts, and agents that promote differentiation have been effective in this disease but are not curative. Dihydroorotate dehydrogenase inhibitors (DHODHi) have the ability to promote AML differentiation and target aberrant malignant myelopoiesis. We introduce HOSU-53, a DHODHi with significant monotherapy activity, which is further enhanced when combined with other standard-of-care therapeutics. We further discovered that DHODHi modulated surface expression of CD38 and CD47, prompting the evaluation of HOSU-53 combined with anti-CD38 and anti-CD47 therapies, where we identified a compelling curative potential in an aggressive AML model with CD47 targeting. Finally, we explored using plasma dihydroorotate (DHO) levels to monitor HOSU-53 safety and found that the level of DHO accumulation could predict HOSU-53 intolerability, suggesting the clinical use of plasma DHO to determine safe DHODHi doses. Collectively, our data support the clinical translation of HOSU-53 in AML, particularly to augment immune therapies. Potent DHODHi to date have been limited by their therapeutic index; however, we introduce pharmacodynamic monitoring to predict tolerability while preserving antitumor activity. We additionally suggest that DHODHi is effective at lower doses with select immune therapies, widening the therapeutic index.

Authors

Ola A. Elgamal, Sydney Fobare, Sandip Vibhute, Abeera Mehmood, Dennis C. Vroom, Mariah L. Johnson, Blaise Stearns, James R. Lerma, Jean Truxall, Emily Stahl, Bridget Carmichael, Shelley J. Orwick, Alice S. Mims, Emily Curran, Ramasamy Santhanam, Susheela Tridandapani, Mitch A. Phelps, Zhiliang Xie, Christopher C. Coss, Sharyn D. Baker, Jeffrey Patrick, Janel K. Ezzell, Jayesh Rai, Jianmin Pan, Shesh N. Rai, Cody Stillwell, Mark Wunderlich, Mouad Abdulrahim, Thomas E. Goodwin, Gerard Hilinski, Chad E. Bennett, Erin Hertlein, John C. Byrd

×

In utero and postnatal ivacaftor/lumacaftor therapy rescues multiorgan disease in CFTR-F508del ferrets
Idil Apak Evans, Xingshen Sun, Bo Liang, Amber R. Vegter, Lydia Guo, Thomas J. Lynch, Yan Zhang, Yulong Zhang, Yaling Yi, Yu Yang, Zehua Feng, Soo Yeun Park, Amanita Shonka, Hannah McCumber, Lisi Qi, Peipei Wu, Guangming Liu, Allison Lacina, Kai Wang, Katherine N. Gibson-Corley, David K. Meyerholz, Dominique H. Limoli, Bradley H. Rosen, Ziying Yan, Douglas J. Bartels, John F. Engelhardt
Idil Apak Evans, Xingshen Sun, Bo Liang, Amber R. Vegter, Lydia Guo, Thomas J. Lynch, Yan Zhang, Yulong Zhang, Yaling Yi, Yu Yang, Zehua Feng, Soo Yeun Park, Amanita Shonka, Hannah McCumber, Lisi Qi, Peipei Wu, Guangming Liu, Allison Lacina, Kai Wang, Katherine N. Gibson-Corley, David K. Meyerholz, Dominique H. Limoli, Bradley H. Rosen, Ziying Yan, Douglas J. Bartels, John F. Engelhardt
View: Text | PDF

In utero and postnatal ivacaftor/lumacaftor therapy rescues multiorgan disease in CFTR-F508del ferrets

  • Text
  • PDF
Abstract

Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, with F508del being the most prevalent mutation. The combination of CFTR modulators (potentiator and correctors) has provided benefit to CF patients carrying the F508del mutation; however, the safety and effectiveness of in utero combination modulator therapy remains unclear. We created a F508del ferret model to test whether ivacaftor/lumacaftor (VX-770/VX-809) therapy can rescue in utero and postnatal pathologies associated with CF. Using primary intestinal organoids and air-liquid interface cultures of airway epithelia, we demonstrate that the F508del mutation in ferret CFTR results in a severe folding and trafficking defect, which can be partially restored by treatment with CFTR modulators. In utero treatment of pregnant jills with ivacaftor/lumacaftor prevented meconium ileus at birth in F508del kits and sustained postnatal treatment of CF offspring improved survival and partially protected from pancreatic insufficiency. Withdrawal of ivacaftor/lumacaftor treatment from juvenile CF ferrets reestablished pancreatic and lung diseases, with altered pulmonary mechanics. These findings suggest that in utero intervention with a combination of CFTR modulators may provide therapeutic benefits to individuals with F508del. This CFTR-F508del ferret model may be useful for testing therapies using clinically translatable endpoints.

Authors

Idil Apak Evans, Xingshen Sun, Bo Liang, Amber R. Vegter, Lydia Guo, Thomas J. Lynch, Yan Zhang, Yulong Zhang, Yaling Yi, Yu Yang, Zehua Feng, Soo Yeun Park, Amanita Shonka, Hannah McCumber, Lisi Qi, Peipei Wu, Guangming Liu, Allison Lacina, Kai Wang, Katherine N. Gibson-Corley, David K. Meyerholz, Dominique H. Limoli, Bradley H. Rosen, Ziying Yan, Douglas J. Bartels, John F. Engelhardt

×
  • ← Previous
  • 1
  • 2
  • …
  • 5
  • 6
  • 7
  • …
  • 31
  • 32
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts