Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Reproductive biology

  • 74 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 5
  • 6
  • 7
  • 8
  • Next →
Fetal and amniotic fluid iron homeostasis in healthy and complicated murine, macaque, and human pregnancy
Allison L. Fisher, Veena Sangkhae, Pietro Presicce, Claire A. Chougnet, Alan H. Jobe, Suhas G. Kallapur, Sammy M. Tabbah, Catalin S. Buhimschi, Irina A. Buhimschi, Tomas Ganz, Elizabeta Nemeth
Allison L. Fisher, Veena Sangkhae, Pietro Presicce, Claire A. Chougnet, Alan H. Jobe, Suhas G. Kallapur, Sammy M. Tabbah, Catalin S. Buhimschi, Irina A. Buhimschi, Tomas Ganz, Elizabeta Nemeth
View: Text | PDF

Fetal and amniotic fluid iron homeostasis in healthy and complicated murine, macaque, and human pregnancy

  • Text
  • PDF
Abstract

Adequate iron supply during pregnancy is essential for fetal development. However, how fetal or amniotic fluid iron levels are regulated during healthy pregnancy, or pregnancies complicated by intraamniotic infection or inflammation (IAI) is unknown. We evaluated amniotic fluid and fetal iron homeostasis in normal and complicated murine, macaque, and human pregnancy. In mice, fetal iron endowment was affected by maternal iron status but amniotic fluid iron concentrations changed little during maternal iron deficiency or excess. In murine and macaque models of inflamed pregnancy, the fetus responded to maternal systemic inflammation or IAI by rapidly upregulating hepcidin and lowering iron in fetal blood, without altering amniotic fluid iron. In humans, elevated cord blood hepcidin with accompanying hypoferremia was observed in pregnancies with antenatal exposure to IAI compared to those that were non-exposed. Hepcidin was also elevated in human amniotic fluid from pregnancies with IAI compared to those without IAI, but amniotic fluid iron levels did not differ between the groups. Our studies in mice, macaques, and humans demonstrate that amniotic fluid iron is largely unregulated but that the rapid induction of fetal hepcidin by inflammation and consequent fetal hypoferremia are conserved mechanisms that may be important in fetal host defense.

Authors

Allison L. Fisher, Veena Sangkhae, Pietro Presicce, Claire A. Chougnet, Alan H. Jobe, Suhas G. Kallapur, Sammy M. Tabbah, Catalin S. Buhimschi, Irina A. Buhimschi, Tomas Ganz, Elizabeta Nemeth

×

A role for placental kisspeptin in β cell adaptation to pregnancy
James E. Bowe, Thomas G. Hill, Katharine F. Hunt, Lorna I.F. Smith, Sian J.S. Simpson, Stephanie A. Amiel, Peter M. Jones
James E. Bowe, Thomas G. Hill, Katharine F. Hunt, Lorna I.F. Smith, Sian J.S. Simpson, Stephanie A. Amiel, Peter M. Jones
View: Text | PDF

A role for placental kisspeptin in β cell adaptation to pregnancy

  • Text
  • PDF
Abstract

During pregnancy the maternal pancreatic islets of Langerhans undergo adaptive changes to compensate for gestational insulin resistance. Kisspeptin has been shown to stimulate insulin release, through its receptor, GPR54. The placenta releases high levels of kisspeptin into the maternal circulation, suggesting a role in modulating the islet adaptation to pregnancy. In the present study we show that pharmacological blockade of endogenous kisspeptin in pregnant mice resulted in impaired glucose homeostasis. This glucose intolerance was due to a reduced insulin response to glucose as opposed to any effect on insulin sensitivity. A β cell–specific GPR54-knockdown mouse line was found to exhibit glucose intolerance during pregnancy, with no phenotype observed outside of pregnancy. Furthermore, in pregnant women circulating kisspeptin levels significantly correlated with insulin responses to oral glucose challenge and were significantly lower in women with gestational diabetes (GDM) compared with those without GDM. Thus, kisspeptin represents a placental signal that plays a physiological role in the islet adaptation to pregnancy, maintaining maternal glucose homeostasis by acting through the β cell GPR54 receptor. Our data suggest reduced placental kisspeptin production, with consequent impaired kisspeptin-dependent β cell compensation, may be a factor in the development of GDM in humans.

Authors

James E. Bowe, Thomas G. Hill, Katharine F. Hunt, Lorna I.F. Smith, Sian J.S. Simpson, Stephanie A. Amiel, Peter M. Jones

×

Extracellular vesicles from endometriosis patients are characterized by a unique miRNA-lncRNA signature
Kasra Khalaj, Jessica E. Miller, Harshavardhan Lingegowda, Asgerally T. Fazleabas, Steven L. Young, Bruce A. Lessey, Madhuri Koti, Chandrakant Tayade
Kasra Khalaj, Jessica E. Miller, Harshavardhan Lingegowda, Asgerally T. Fazleabas, Steven L. Young, Bruce A. Lessey, Madhuri Koti, Chandrakant Tayade
View: Text | PDF

Extracellular vesicles from endometriosis patients are characterized by a unique miRNA-lncRNA signature

  • Text
  • PDF
Abstract

With multifactorial etiologies, combined with disease heterogeneity and a lack of suitable diagnostic markers and therapy, endometriosis remains a major reproductive health challenge. Extracellular vesicles (EVs) have emerged as major contributors of disease progression in several conditions, including a variety of cancers; however, their role in endometriosis pathophysiology has remained elusive. Using next-generation sequencing of EVs obtained from endometriosis patient tissues and plasma samples compared with controls, we have documented that patient EVs carry unique signatures of miRNAs and long noncoding RNAs (lncRNAs) reflecting their contribution to disease pathophysiology. Mass spectrophotometry–based proteomic analysis of EVs from patient plasma and peritoneal fluid further revealed enrichment of specific pathways, as well as altered immune and metabolic processes. Functional studies in endometriotic epithelial and endothelial cell lines using EVs from patient plasma and controls clearly indicate autocrine uptake and paracrine cell proliferative roles, suggestive of their involvement in endometriosis. Multiplex cytokine analysis of cell supernatants in response to patient and control plasma–derived EVs indicate robust signatures of important inflammatory and angiogenic cytokines known to be involved in disease progression. Collectively, these findings suggest that endometriosis-associated EVs carry unique cargo and contribute to disease pathophysiology by influencing inflammation, angiogenesis, and proliferation within the endometriotic lesion microenvironment.

Authors

Kasra Khalaj, Jessica E. Miller, Harshavardhan Lingegowda, Asgerally T. Fazleabas, Steven L. Young, Bruce A. Lessey, Madhuri Koti, Chandrakant Tayade

×

Gonadotrope androgen receptor mediates pituitary responsiveness to hormones and androgen-induced subfertility
Zhiqiang Wang, Mingxiao Feng, Olubusayo Awe, Yaping Ma, Mingjie Shen, Ping Xue, Rexford Ahima, Andrew Wolfe, James Segars, Sheng Wu
Zhiqiang Wang, Mingxiao Feng, Olubusayo Awe, Yaping Ma, Mingjie Shen, Ping Xue, Rexford Ahima, Andrew Wolfe, James Segars, Sheng Wu
View: Text | PDF

Gonadotrope androgen receptor mediates pituitary responsiveness to hormones and androgen-induced subfertility

  • Text
  • PDF
Abstract

Many women with hyperandrogenemia suffer from irregular menses and infertility. However, it is unknown whether androgens directly affect reproduction. Since animal models of hyperandrogenemia-induced infertility are associated with obesity, which may impact reproductive function, we have created a lean mouse model of elevated androgen using implantation of low dose dihydrotestosterone (DHT) pellets to separate the effects of elevated androgen from obesity. The hypothalamic-pituitary-gonadal axis controls reproduction. While we have demonstrated that androgen impairs ovarian function, androgen could also disrupt neuroendocrine function at the level of brain and/or pituitary to cause infertility. To understand how elevated androgens might act on pituitary gonadotropes to influence reproductive function, female mice with disruption of the androgen receptor (Ar) gene specifically in pituitary gonadotropes (PitARKO) were produced. DHT treated control mice with intact pituitary Ar (Con-DHT) exhibit disrupted estrous cyclicity and fertility with reduced pituitary responsiveness to GnRH at the level of both calcium signaling and LH secretion. These effects were ameliorated in DHT treated PitARKO mice. Calcium signaling controls GnRH regulation of LH vesicle exotocysis. Our data implicated upregulation of GEM (a voltage-dependent calcium channel inhibitor) in the pituitary as a potential mechanism for androgen’s pathological effects. These results demonstrate that gonadotrope AR, as an extra-ovarian regulator, plays an important role in reproductive pathophysiology.

Authors

Zhiqiang Wang, Mingxiao Feng, Olubusayo Awe, Yaping Ma, Mingjie Shen, Ping Xue, Rexford Ahima, Andrew Wolfe, James Segars, Sheng Wu

×

S100a4-Cre-mediated deletion of Patched1 causes hypogonadotropic hypogonadism: role of pituitary hematopoietic cells in endocrine regulation
Yi Athena Ren, Teresa Monkkonen, Michael T. Lewis, Daniel J. Bernard, Helen C. Christian, Carolina J. Jorgez, Joshua A. Moore, John D. Landua, Haelee M. Chin, Weiqin Chen, Swarnima Singh, Ik Sun Kim, Xiang H.-F. Zhang, Yan Xia, Kevin J. Phillips, Harry MacKay, Robert A. Waterland, M. Cecilia Ljungberg, Pradip K. Saha, Sean M. Hartig, Tatiana Fiordelisio Coll, JoAnne S. Richards
Yi Athena Ren, Teresa Monkkonen, Michael T. Lewis, Daniel J. Bernard, Helen C. Christian, Carolina J. Jorgez, Joshua A. Moore, John D. Landua, Haelee M. Chin, Weiqin Chen, Swarnima Singh, Ik Sun Kim, Xiang H.-F. Zhang, Yan Xia, Kevin J. Phillips, Harry MacKay, Robert A. Waterland, M. Cecilia Ljungberg, Pradip K. Saha, Sean M. Hartig, Tatiana Fiordelisio Coll, JoAnne S. Richards
View: Text | PDF

S100a4-Cre-mediated deletion of Patched1 causes hypogonadotropic hypogonadism: role of pituitary hematopoietic cells in endocrine regulation

  • Text
  • PDF
Abstract

Hormones produced by the anterior pituitary gland regulate an array of important physiological functions, but pituitary hormone disorders are not fully understood. Herein we report that genetically-engineered mice with deletion of the hedgehog signaling receptor Patched1 by S100a4 promoter-driven Cre recombinase (S100a4-Cre;Ptch1fl/fl mutants) exhibit adult-onset hypogonadotropic hypogonadism and multiple pituitary hormone disorders. During the transition from puberty to adult, S100a4-Cre;Ptch1fl/fl mice of both sexes develop hypogonadism coupled with reduced gonadotropin levels. Their pituitary glands also display severe structural and functional abnormalities, as revealed by transmission electron microscopy and expression of key genes regulating pituitary endocrine functions. S100a4-Cre activity in the anterior pituitary gland is restricted to CD45+ cells of hematopoietic origin, including folliculo-stellate cells and other immune cell types, causing sex-specific changes in the expression of genes regulating the local microenvironment of the anterior pituitary. These findings provide in vivo evidence for the importance of pituitary hematopoietic cells in regulating fertility and endocrine function, in particular during sexual maturation and likely through sexually dimorphic mechanisms. These findings support a previously unrecognized role of hematopoietic cells in causing hypogonadotropic hypogonadism and provide inroads into the molecular and cellular basis for pituitary hormone disorders in humans.

Authors

Yi Athena Ren, Teresa Monkkonen, Michael T. Lewis, Daniel J. Bernard, Helen C. Christian, Carolina J. Jorgez, Joshua A. Moore, John D. Landua, Haelee M. Chin, Weiqin Chen, Swarnima Singh, Ik Sun Kim, Xiang H.-F. Zhang, Yan Xia, Kevin J. Phillips, Harry MacKay, Robert A. Waterland, M. Cecilia Ljungberg, Pradip K. Saha, Sean M. Hartig, Tatiana Fiordelisio Coll, JoAnne S. Richards

×

Faulty oxygen sensing disrupts angiomotin function in trophoblast cell migration and predisposes to preeclampsia
Abby Farrell, Sruthi Alahari, Leonardo Ermini, Andrea Tagliaferro, Michael Litvack, Martin Post, Isabella Caniggia
Abby Farrell, Sruthi Alahari, Leonardo Ermini, Andrea Tagliaferro, Michael Litvack, Martin Post, Isabella Caniggia
View: Text | PDF

Faulty oxygen sensing disrupts angiomotin function in trophoblast cell migration and predisposes to preeclampsia

  • Text
  • PDF
Abstract

Human placenta development and a successful pregnancy is incumbent upon precise oxygen-dependent control of trophoblast migration/invasion. Persistent low oxygen leading to failed trophoblast invasion promotes inadequate spiral artery remodeling, a characteristic of preeclampsia. Angiomotin (AMOT) is a multifaceted scaffolding protein involved in cell polarity and migration, yet its upstream regulation and significance in the human placenta remain unknown. Herein, we show that AMOT is primarily expressed in migratory extravillous trophoblast cells (EVTs) of the intermediate and distal anchoring column. Its expression increases after 10 weeks of gestation when oxygen tension rises and EVT migration/invasion peaks. Time-lapse imaging confirmed that the AMOT 80-kDa isoform promotes migration of trophoblastic JEG3 and HTR-8/SVneo cells. In preeclampsia, however, AMOT expression is decreased and its localization to migratory fetomaternal interface EVTs is disrupted. We demonstrate that Jumonji C domain–containing protein 6 (JMJD6), an oxygen sensor, positively regulates AMOT via oxygen-dependent lysyl hydroxylation. Furthermore, in vitro and ex vivo studies show that transforming growth factor-β (TGF-β) regulates AMOT expression, its interaction with polarity protein PAR6, and its subcellular redistribution from tight junctions to cytoskeleton. Our data reveal an oxygen- and TGF-β–driven migratory function for AMOT in the human placenta, and implicate its deficiency in impaired trophoblast migration that plagues preeclampsia.

Authors

Abby Farrell, Sruthi Alahari, Leonardo Ermini, Andrea Tagliaferro, Michael Litvack, Martin Post, Isabella Caniggia

×

IL-1 receptor antagonist therapy mitigates placental dysfunction and perinatal injury following Zika virus infection
Jun Lei, Meghan S. Vermillion, Bei Jia, Han Xie, Li Xie, Michael W. McLane, Jeanne S. Sheffield, Andrew Pekosz, Amanda Brown, Sabra L. Klein, Irina Burd
Jun Lei, Meghan S. Vermillion, Bei Jia, Han Xie, Li Xie, Michael W. McLane, Jeanne S. Sheffield, Andrew Pekosz, Amanda Brown, Sabra L. Klein, Irina Burd
View: Text | PDF

IL-1 receptor antagonist therapy mitigates placental dysfunction and perinatal injury following Zika virus infection

  • Text
  • PDF
Abstract

Zika virus (ZIKV) infection during pregnancy causes significant adverse sequelae in the developing fetus, and results in long-term structural and neurologic defects. Most preventive and therapeutic efforts have focused on the development of vaccines, antivirals, and antibodies. The placental immunologic response to ZIKV, however, has been largely overlooked as a target for therapeutic intervention. The placental inflammatory response, specifically IL-1β secretion and signaling, is induced by ZIKV infection and represents an environmental factor that is known to increase the risk of perinatal developmental abnormalities. We show in a mouse model that maternally administrated IL-1 receptor antagonist (IRA; Kineret, or anakinra), following ZIKV exposure, can preserve placental function (by improving trophoblast invasion and placental vasculature), increase fetal viability, and reduce neurobehavioral deficits in the offspring. We further demonstrate that while ZIKV RNA is highly detectable in placentas, it is not correlated with fetal viability. Beyond its effects in the placenta, we show that IL-1 blockade may also directly decrease fetal neuroinflammation by mitigating fetal microglial activation in a dose-dependent manner. Our studies distinguish the role of placental inflammation during ZIKV-infected pregnancies, and demonstrate that maternal IRA may attenuate fetal neuroinflammation and improve perinatal outcomes.

Authors

Jun Lei, Meghan S. Vermillion, Bei Jia, Han Xie, Li Xie, Michael W. McLane, Jeanne S. Sheffield, Andrew Pekosz, Amanda Brown, Sabra L. Klein, Irina Burd

×

Fetal hypoxemia causes abnormal myocardial development in a preterm ex utero fetal ovine model
Kendall M. Lawrence, Samson Hennessy-Strahs, Patrick E. McGovern, Ali Y. Mejaddam, Avery C. Rossidis, Heron D. Baumgarten, Esha Bansal, Maryann Villeda, Jiancheng Han, Zhongshan Gou, Sheng Zhao, Jack Rychik, William H. Peranteau, Marcus G. Davey, Alan W. Flake, J. William Gaynor, Carlo R. Bartoli
Kendall M. Lawrence, Samson Hennessy-Strahs, Patrick E. McGovern, Ali Y. Mejaddam, Avery C. Rossidis, Heron D. Baumgarten, Esha Bansal, Maryann Villeda, Jiancheng Han, Zhongshan Gou, Sheng Zhao, Jack Rychik, William H. Peranteau, Marcus G. Davey, Alan W. Flake, J. William Gaynor, Carlo R. Bartoli
View: Text | PDF

Fetal hypoxemia causes abnormal myocardial development in a preterm ex utero fetal ovine model

  • Text
  • PDF
Abstract

In utero hypoxia is a major cause of neonatal morbidity and mortality and predisposes to adult cardiovascular disease. No therapies exist to correct fetal hypoxia. In a new ex utero fetal support system, we tested the hypothesis that hypoxemic support of the fetus impairs myocardial development, whereas normoxic support allows normal myocardial development. Preterm fetal lambs were connected via umbilical vessels to a low-resistance oxygenator and placed in a sterile-fluid environment. Control normoxic fetuses received normal fetal oxygenation, and hypoxemic fetuses received subphysiologic oxygenation. Fetuses with normal in utero development served as normal controls. Hypoxemic fetuses exhibited decreased maximum cardiac output in both ventricles, diastolic function, myocyte and myocyte nuclear size, and increased myocardial capillary density versus control normoxic fetuses. There were no differences between control normoxic fetuses in the fetal support system and normal in utero controls. Chronic fetal hypoxemia resulted in significant abnormalities in myocyte architecture and myocardial capillary density as well as systolic and diastolic cardiac function, whereas control fetuses showed no differences. This ex utero fetal support system has potential to become a significant research tool and novel therapy to correct fetal hypoxia.

Authors

Kendall M. Lawrence, Samson Hennessy-Strahs, Patrick E. McGovern, Ali Y. Mejaddam, Avery C. Rossidis, Heron D. Baumgarten, Esha Bansal, Maryann Villeda, Jiancheng Han, Zhongshan Gou, Sheng Zhao, Jack Rychik, William H. Peranteau, Marcus G. Davey, Alan W. Flake, J. William Gaynor, Carlo R. Bartoli

×

Biomarkers and immunoprofiles associated with fetal abnormalities of ZIKV-positive pregnancies
Suan-Sin Foo, Weiqiang Chen, Yen Chan, Wai-Suet Lee, Shin-Ae Lee, Genhong Cheng, Karin Nielsen-Saines, Patrícia Brasil, Jae U. Jung
Suan-Sin Foo, Weiqiang Chen, Yen Chan, Wai-Suet Lee, Shin-Ae Lee, Genhong Cheng, Karin Nielsen-Saines, Patrícia Brasil, Jae U. Jung
View: Text | PDF

Biomarkers and immunoprofiles associated with fetal abnormalities of ZIKV-positive pregnancies

  • Text
  • PDF
Abstract

BACKGROUND. An intricate fetal-maternal immune crosstalk during pregnancy is essential for a healthy birth. Hence, the infection-induced alterations of maternal immunity often lead to adverse outcomes for mother and/or child. The emergence of Zika virus (ZIKV) infection in pregnant women has been associated with more than 3,000 cases of microcephaly and nervous system malformations. METHODS. To explore the potential correlation of ZIKV-induced alteration of maternal immunity with fetal abnormalities, we performed extensive sera immunoprofiling of 74 pregnant women: 30 symptomatic ZIKV+ pregnant patients and 30 healthy pregnant controls in ZIKV-endemic Rio de Janeiro, along with 14 healthy pregnant controls in non-endemic Los Angeles. RESULTS. Extensive multiplexing analysis of 69 cytokines revealed that CXCL10, CCL2, and CCL8 chemokines were specifically associated with symptomatic ZIKV+ infection during pregnancy, and distinct immunoprofiles were detected at different trimesters in ZIKV-infected pregnant women. Intriguingly, the high CCL2 level and its inverse correlation with CD163, TNFRSF1A, and CCL22 levels was apparently associated with ZIKV-induced abnormal birth. CONCLUSION. Our findings provide insights into the alteration of ZIKV-elicited maternal immunity, serving as a potential clinical biomarker platform. FUNDING. NIH (CA200422, CA180779, DE023926, AI073099, AI116585, AI129496, AI140705, AI069120, AI056154, AI078389, AI28697, AI40718 and AI129534-01), Hastings Foundation, Fletcher Jones Foundation, Departamento de Ciência e Tecnologia (DECIT/25000.072811/2016-17) do Ministério da Saúde do Brasil, and Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior CAPES/88887.116627/2016-01.

Authors

Suan-Sin Foo, Weiqiang Chen, Yen Chan, Wai-Suet Lee, Shin-Ae Lee, Genhong Cheng, Karin Nielsen-Saines, Patrícia Brasil, Jae U. Jung

×

Modulations of human resting brain connectivity by kisspeptin enhance sexual and emotional functions
Alexander N. Comninos, Lysia Demetriou, Matthew B. Wall, Amar J. Shah, Sophie A. Clarke, Shakunthala Narayanaswamy, Alexander Nesbitt, Chioma Izzi-Engbeaya, Julia K. Prague, Ali Abbara, Risheka Ratnasabapathy, Lisa Yang, Victoria Salem, Gurjinder M. Nijher, Channa N. Jayasena, Mark Tanner, Paul Bassett, Amrish Mehta, John McGonigle, Eugenii A. Rabiner, Stephen R. Bloom, Waljit S. Dhillo
Alexander N. Comninos, Lysia Demetriou, Matthew B. Wall, Amar J. Shah, Sophie A. Clarke, Shakunthala Narayanaswamy, Alexander Nesbitt, Chioma Izzi-Engbeaya, Julia K. Prague, Ali Abbara, Risheka Ratnasabapathy, Lisa Yang, Victoria Salem, Gurjinder M. Nijher, Channa N. Jayasena, Mark Tanner, Paul Bassett, Amrish Mehta, John McGonigle, Eugenii A. Rabiner, Stephen R. Bloom, Waljit S. Dhillo
View: Text | PDF

Modulations of human resting brain connectivity by kisspeptin enhance sexual and emotional functions

  • Text
  • PDF
Abstract

BACKGROUND. Resting brain connectivity is a crucial component of human behavior demonstrated by disruptions in psychosexual and emotional disorders. Kisspeptin, a recently identified critical reproductive hormone, can alter activity in certain brain structures but its effects on resting brain connectivity and networks in humans remain elusive. METHODS. We determined the effects of kisspeptin on resting brain connectivity (using functional neuroimaging) and behavior (using psychometric analyses) in healthy men, in a randomized double-blinded 2-way placebo-controlled study. RESULTS. Kisspeptin’s modulation of the default mode network (DMN) correlated with increased limbic activity in response to sexual stimuli (globus pallidus r = 0.500, P = 0.005; cingulate r = 0.475, P = 0.009). Furthermore, kisspeptin’s DMN modulation was greater in men with less reward drive (r = –0.489, P = 0.008) and predicted reduced sexual aversion (r = –0.499, P = 0.006), providing key functional significance. Kisspeptin also enhanced key mood connections including between the amygdala-cingulate, hippocampus-cingulate, and hippocampus–globus pallidus (all P < 0.05). Consistent with this, kisspeptin’s enhancement of hippocampus–globus pallidus connectivity predicted increased responses to negative stimuli in limbic structures (including the thalamus and cingulate [all P < 0.01]). CONCLUSION. Taken together, our data demonstrate a previously unknown role for kisspeptin in the modulation of functional brain connectivity and networks, integrating these with reproductive hormones and behaviors. Our findings that kisspeptin modulates resting brain connectivity to enhance sexual and emotional processing and decrease sexual aversion, provide foundation for kisspeptin-based therapies for associated disorders of body and mind. FUNDING. NIHR, MRC, and Wellcome Trust.

Authors

Alexander N. Comninos, Lysia Demetriou, Matthew B. Wall, Amar J. Shah, Sophie A. Clarke, Shakunthala Narayanaswamy, Alexander Nesbitt, Chioma Izzi-Engbeaya, Julia K. Prague, Ali Abbara, Risheka Ratnasabapathy, Lisa Yang, Victoria Salem, Gurjinder M. Nijher, Channa N. Jayasena, Mark Tanner, Paul Bassett, Amrish Mehta, John McGonigle, Eugenii A. Rabiner, Stephen R. Bloom, Waljit S. Dhillo

×
  • ← Previous
  • 1
  • 2
  • …
  • 5
  • 6
  • 7
  • 8
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts