The placenta is a barrier against maternal-fetal transmission of pathogens. Placental infections can cause several adverse pregnancy outcomes, including preterm birth (PTB). Yet, we have limited knowledge regarding the mechanisms the placenta uses to control infections. Here, we show that autophagy, a cellular recycling pathway important for host defense against pathogens, and the autophagy gene Atg16L1 play a key role in placental defense and are negatively associated with PTB in pregnant women. First, we demonstrate that placentas from women who delivered preterm exhibit reduced autophagy activity and are associated with higher infection indicators. Second, we identify the cellular location of the autophagy activity as being in syncytial trophoblasts. Third, we demonstrate that higher levels of autophagy and ATG16L1 in human trophoblasts were associated with increased resistance to infection. Accordingly, loss of autophagy or ATG16L1 impaired trophoblast antibacterial defenses. Fourth, we show that
Bin Cao, Colin Macones, Indira U. Mysorekar
Regeneration of hepatic sinusoidal vasculature is essential for non-fibrotic liver regrowth and restoration of its metabolic capacity. However, little is known about how this specialized vascular niche is regenerated. Here we show that activation of endothelial sphingosine-1-phosphate receptor-1 (S1P1) by its natural ligand bound to HDL (HDL-S1P) induces liver regeneration and curtails fibrosis. In mice lacking HDL-S1P, liver regeneration after partial hepatectomy was impeded and associated with aberrant vascular remodeling, thrombosis and peri-sinusoidal fibrosis. Notably, this “maladaptive repair” phenotype was recapitulated in mice that lack S1P1 in the endothelium. Reciprocally, enhanced plasma levels of HDL-S1P or administration of SEW2871, a pharmacological agonist specific for S1P1 enhanced regeneration of metabolically functional vasculature and alleviated fibrosis in mouse chronic injury and cholestasis models. This study shows that natural and pharmacological ligands modulate endothelial S1P1 to stimulate liver regeneration and inhibit fibrosis, suggesting that activation of this pathway may be a novel therapeutic strategy for liver fibrosis.
Bi-Sen Ding, Catherine H. Liu, Yue Sun, Yutian Chen, Steven L. Swendeman, Bongnam Jung, Deebly Chavez, Zhongwei Cao, Christina Christoffersen, Lars Bo Nielsen, Susan R. Schwab, Shahin Rafii, Timothy Hla
Heterogeneity of tumor cells and their microenvironment can affect outcome in cancer. Blockade of immune checkpoints (ICPs) expressed only on a subset of immune cells leads to durable responses in advanced melanoma. Tissue-resident memory T (TRM) cells have recently emerged as a distinct subset of memory T cells in nonlymphoid tissues. Here, we show that functional properties and expression of ICPs within tumor-infiltrating lymphocytes (TILs) differ from those of blood T cells. TILs secrete less IL-2, IFN-γ, and TNF-α compared with circulating counterparts, and expression of VEGF correlated with reduced TIL infiltration. Within tumors, ICPs are particularly enriched within T cells with phenotype and genomic features of TRM cells and the CD16+ subset of myeloid cells. Concurrent T cell receptor (TCR) and tumor exome sequencing of individual metastases in the same patient revealed that interlesional diversity of TCRs exceeded differences in mutation/neoantigen load in tumor cells. These findings suggest that the TRM subset of TILs may be the major target of ICP blockade and illustrate interlesional diversity of tissue-resident TCRs within individual metastases, which did not equilibrate between metastases and may differentially affect the outcome of immune therapy at each site.
Chandra Sekhar Boddupalli, Noffar Bar, Krishna Kadaveru, Michael Krauthammer, Natopol Pornputtapong, Zifeng Mai, Stephan Ariyan, Deepak Narayan, Harriet Kluger, Yanhong Deng, Rakesh Verma, Rituparna Das, Antonella Bacchiocchi, Ruth Halaban, Mario Sznol, Madhav V. Dhodapkar, Kavita M. Dhodapkar
Systemic sclerosis (SSc) is a rare autoimmune disease with the highest case-fatality rate of all connective tissue diseases. Current efforts to determine patient response to a given treatment using the modified Rodnan skin score (mRSS) are complicated by interclinician variability, confounding, and the time required between sequential mRSS measurements to observe meaningful change. There is an unmet critical need for an objective metric of SSc disease severity. Here, we performed an integrated, multicohort analysis of SSc transcriptome data across 7 datasets from 6 centers composed of 515 samples. Using 158 skin samples from SSc patients and healthy controls recruited at 2 centers as a discovery cohort, we identified a 415-gene expression signature specific for SSc, and validated its ability to distinguish SSc patients from healthy controls in an additional 357 skin samples from 5 independent cohorts. Next, we defined the SSc skin severity score (4S). In every SSc cohort of skin biopsy samples analyzed in our study, 4S correlated significantly with mRSS, allowing objective quantification of SSc disease severity. Using transcriptome data from the largest longitudinal trial of SSc patients to date, we showed that 4S allowed us to objectively monitor individual SSc patients over time, as (a) the change in 4S of a patient is significantly correlated with change in the mRSS, and (b) the change in 4S at 12 months of treatment could predict the change in mRSS at 24 months. Our results suggest that 4S could be used to distinguish treatment responders from nonresponders prior to mRSS change. Our results demonstrate the potential clinical utility of a novel robust molecular signature and a computational approach to SSc disease severity quantification.
Shane Lofgren, Monique Hinchcliff, Mary Carns, Tammara Wood, Kathleen Aren, Esperanza Arroyo, Peggie Cheung, Alex Kuo, Antonia Valenzuela, Anna Haemel, Paul J. Wolters, Jessica Gordon, Robert Spiera, Shervin Assassi, Francesco Boin, Lorinda Chung, David Fiorentino, Paul J. Utz, Michael L. Whitfield, Purvesh Khatri
Myalgic encephalopathy/chronic fatigue syndrome (ME/CFS) is a debilitating disease of unknown etiology, with hallmark symptoms including postexertional malaise and poor recovery. Metabolic dysfunction is a plausible contributing factor. We hypothesized that changes in serum amino acids may disclose specific defects in energy metabolism in ME/CFS. Analysis in 200 ME/CFS patients and 102 healthy individuals showed a specific reduction of amino acids that fuel oxidative metabolism via the TCA cycle, mainly in female ME/CFS patients. Serum 3-methylhistidine, a marker of endogenous protein catabolism, was significantly increased in male patients. The amino acid pattern suggested functional impairment of pyruvate dehydrogenase (PDH), supported by increased mRNA expression of the inhibitory PDH kinases 1, 2, and 4; sirtuin 4; and PPARδ in peripheral blood mononuclear cells from both sexes. Myoblasts grown in presence of serum from patients with severe ME/CFS showed metabolic adaptations, including increased mitochondrial respiration and excessive lactate secretion. The amino acid changes could not be explained by symptom severity, disease duration, age, BMI, or physical activity level among patients. These findings are in agreement with the clinical disease presentation of ME/CFS, with inadequate ATP generation by oxidative phosphorylation and excessive lactate generation upon exertion.
Øystein Fluge, Olav Mella, Ove Bruland, Kristin Risa, Sissel E. Dyrstad, Kine Alme, Ingrid G. Rekeland, Dipak Sapkota, Gro V. Røsland, Alexander Fosså, Irini Ktoridou-Valen, Sigrid Lunde, Kari Sørland, Katarina Lien, Ingrid Herder, Hanne Thürmer, Merete E. Gotaas, Katarzyna A. Baranowska, Louis M.L.J. Bohnen, Christoph Schäfer, Adrian McCann, Kristian Sommerfelt, Lars Helgeland, Per M. Ueland, Olav Dahl, Karl J. Tronstad
Current therapies to treat non–small cell lung carcinoma (NSCLC) have proven ineffective owing to transient, variable, and incomplete responses. Here we show that ABL kinases, ABL1 and ABL2, promote metastasis of lung cancer cells harboring EGFR or KRAS mutations. Inactivation of ABL kinases suppresses NSCLC metastasis to brain and bone, and other organs. ABL kinases are required for expression of prometastasis genes. Notably, ABL1 and ABL2 depletion impairs extravasation of lung adenocarcinoma cells into the lung parenchyma. We found that ABL-mediated activation of the TAZ and β-catenin transcriptional coactivators is required for NSCLC metastasis. ABL kinases activate TAZ and β-catenin by decreasing their interaction with the β-TrCP ubiquitin ligase, leading to increased protein stability. High-level expression of
Jing Jin Gu, Clay Rouse, Xia Xu, Jun Wang, Mark W. Onaitis, Ann Marie Pendergast
Life-sustaining responses to low oxygen, or hypoxia, depend on signal transduction by HIFs, but the underlying mechanisms by which cells sense hypoxia are not completely understood. Based on prior studies suggesting a link between the β-adrenergic receptor (β-AR) and hypoxia responses, we hypothesized that the β-AR mediates hypoxia sensing and is necessary for HIF-1α accumulation. Beta blocker treatment of mice suppressed hypoxia induction of renal HIF-1α accumulation, erythropoietin production, and erythropoiesis in vivo. Likewise, beta blocker treatment of primary human endothelial cells in vitro decreased hypoxia-mediated HIF-1α accumulation and binding to target genes and the downstream hypoxia-inducible gene expression. In mechanistic studies, cAMP-activated PKA and/or GPCR kinases (GRK), which both participate in β-AR signal transduction, were investigated. Direct activation of cAMP/PKA pathways did not induce HIF-1α accumulation, and inhibition of PKA did not blunt HIF-1α induction by hypoxia. In contrast, pharmacological inhibition of GRK, or expression of a GRK phosphorylation–deficient β-AR mutant in cells, blocked hypoxia-mediated HIF-1α accumulation. Mass spectrometry–based quantitative analyses revealed a hypoxia-mediated β-AR phosphorylation barcode that was different from the classical agonist phosphorylation barcode. These findings indicate that the β-AR is fundamental to the molecular and physiological responses to hypoxia.
Hoi I. Cheong, Kewal Asosingh, Olivia R. Stephens, Kimberly A. Queisser, Weiling Xu, Belinda Willard, Bo Hu, Josephine Kam Tai Dermawan, George R. Stark, Sathyamangla V. Naga Prasad, Serpil C. Erzurum
Duchenne muscular dystrophy (DMD) is a devastating muscle disease characterized by progressive muscle deterioration and replacement with an aberrant fatty, fibrous matrix. Chronic upregulation of nuclear factor κB (NF-κB) is implicated as a driver of the dystrophic pathogenesis. Herein, 2 members of a novel class of NF-κB inhibitors, edasalonexent (formerly CAT-1004) and CAT-1041, were evaluated in both
David W. Hammers, Margaret M. Sleeper, Sean C. Forbes, Cora C. Coker, Michael R. Jirousek, Michael Zimmer, Glenn A. Walter, H. Lee Sweeney
Three-dimensional cardiac mapping is important for optimal visualization of the heart during cardiac ablation for the treatment of certain arrhythmias. However, many hospitals and clinics worldwide cannot afford the high cost of the current mapping systems. We set out to determine if, using predefined algorithms, comparable 3D cardiac maps could be created by a new device that relies on data generated from single-plane fluoroscopy and patient recording and monitoring systems, without the need for costly equipment, infrastructure changes, or specialized catheters. The study included phantom and animal experiments to compare the prototype test device, Navik 3D, with the existing CARTO 3 System. The primary endpoint directly compared: (a) the 3D distance between the Navik 3D–simulated ablation location and the back-projected ground truth location of the pacing and mapping catheter electrode, and (b) the same distance for CARTO. The study’s primary objective was considered met if the 95% confidence lower limit was greater than 0.75% for the Navik 3D–CARTO difference between the 2 distances, or less than or equal to 2 mm. Study results showed that the Navik 3D performance was equivalent to the CARTO system, and that accurate 3D cardiac maps can be created using data from equipment that already exists in all electrophysiology labs.
Jasbir Sra, David Krum, Indrajit Choudhuri, Barry Belanger, Mark Palma, Donald Brodnick, Daniel B. Rowe
Angiogenesis and co-optive vascular remodeling are prerequisites of solid tumor growth. Vascular heterogeneity, notably perivascular composition, may play a critical role in determining the rate of cancer progression. The contribution of vascular pericyte heterogeneity to cancer progression and therapy response is unknown. Here, we show that angiopoietin-2 (Ang2) orchestrates pericyte heterogeneity in breast cancer with an effect on metastatic disease and response to chemotherapy. Using multispectral imaging of human breast tumor specimens, we report that perivascular composition, as defined by the ratio of PDGFRβ– and desmin+ pericytes, provides information about the response to epirubicin but not paclitaxel. Using 17 distinct patient-derived breast cancer xenografts, we demonstrate a cancer cell–derived influence on stromal Ang2 production and a cancer cell–defined control over tumor vasculature and perivascular heterogeneity. The aggressive features of tumors and their distinct response to therapies may thus emerge by the cancer cell–defined engagement of distinct and heterogeneous angiogenic programs.
Jiha Kim, Pedro Correa de Sampaio, Donna Marie Lundy, Qian Peng, Kurt W. Evans, Hikaru Sugimoto, Mihai Gagea, Yvonne Kienast, Nayra Soares do Amaral, Rafael Malagoli Rocha, Hans Petter Eikesdal, Per Eystein Lønning, Funda Meric-Bernstam, Valerie S. LeBleu