Preeclampsia and fetal growth restriction (FGR) are major causes of the more than 5 million perinatal and infant deaths occurring globally each year, and both are associated with placental dysfunction. The risk of perinatal and infant death is greater in males, but the mechanisms are unclear. We studied data and biological samples from the Pregnancy Outcome Prediction (POP) study, a prospective cohort study that followed 4,212 women having first pregnancies from their dating ultrasound scan through delivery. We tested the hypothesis that fetal sex would be associated with altered placental function using multiomic and targeted analyses. We found that spermine synthase (SMS) escapes X-chromosome inactivation (XCI) in the placenta and is expressed at lower levels in male primary trophoblast cells, and male cells were more sensitive to polyamine depletion. The spermine metabolite N1,N12-diacetylspermine (DiAcSpm) was higher in the female placenta and in the serum of women pregnant with a female fetus. Higher maternal serum levels of DiAcSpm increased the risk of preeclampsia but decreased the risk of FGR. To our knowledge, DiAcSpm is the first maternal biomarker to demonstrate opposite associations with preeclampsia and FGR, and this is the first evidence to implicate polyamine metabolism in sex-related differences in placentally related complications of human pregnancy.
Sungsam Gong, Ulla Sovio, Irving L.M.H. Aye, Francesca Gaccioli, Justyna Dopierala, Michelle D. Johnson, Angela M. Wood, Emma Cook, Benjamin J. Jenkins, Albert Koulman, Robert A. Casero Jr., Miguel Constância, D. Stephen Charnock-Jones, Gordon C.S. Smith
We present a new technique to fully automate the segmentation of an organ from 3D ultrasound (3D-US) volumes, using the placenta as the target organ. Image analysis tools to estimate organ volume do exist but are too time consuming and operator dependant. Fully automating the segmentation process would potentially allow the use of placental volume to screen for increased risk of pregnancy complications. The placenta was segmented from 2,393 first trimester 3D-US volumes using a semiautomated technique. This was quality controlled by three operators to produce the “ground-truth” data set. A fully convolutional neural network (OxNNet) was trained using this ground-truth data set to automatically segment the placenta. OxNNet delivered state-of-the-art automatic segmentation. The effect of training set size on the performance of OxNNet demonstrated the need for large data sets. The clinical utility of placental volume was tested by looking at predictions of small-for-gestational-age babies at term. The receiver-operating characteristics curves demonstrated almost identical results between OxNNet and the ground-truth). Our results demonstrated good similarity to the ground-truth and almost identical clinical results for the prediction of SGA.
Pádraig Looney, Gordon N. Stevenson, Kypros H. Nicolaides, Walter Plasencia, Malid Molloholli, Stavros Natsis, Sally L. Collins
BACKGROUND. The neuropeptide kisspeptin stimulates luteinizing hormone (LH) secretion in healthy adults but not in adults with idiopathic hypogonadotropic hypogonadism. We hypothesized that, in children presenting with delayed or stalled puberty, kisspeptin would elicit LH secretion in those children found on detailed nighttime neuroendocrine profiling to have evidence of emerging reproductive endocrine function. METHODS. Eleven boys and four girls were admitted overnight to assess LH secretion at baseline, after a single intravenous bolus of kisspeptin, and after a single intravenous bolus of gonadotropin-releasing hormone (GnRH). Subjects then received exogenous pulsatile GnRH for 6 days and returned for a second visit to measure responses to kisspeptin and GnRH after this pituitary “priming.” Responses to kisspeptin and GnRH were also measured in 5 healthy men. RESULTS. Of the 15 children with delayed/stalled puberty, 6 exhibited at least one spontaneous LH pulse overnight; all of these subjects had clear responses to kisspeptin, as did one additional subject. Seven subjects had no response to kisspeptin, and one subject exhibited an intermediate response. In the children who responded to kisspeptin, the responses had features comparable to those of adult men. CONCLUSION. In this first report of kisspeptin administration to pediatric subjects to our knowledge, children with delayed/stalled puberty showed a wide range of responses, with some showing a robust response and others showing little to no response. Further follow-up will determine whether responses to kisspeptin predict future pubertal entry for children with delayed puberty. TRIAL REGISTRATION. ClinicalTrials.gov NCT01438034 and NCT01952782. FUNDING. NIH Eunice Kennedy Shriver National Institute of Child Health and Human Development (R01 HD043341, R01 HD090071, P50 HD028138), NIH National Center for Advancing Translational (UL1 TR001102), NIH National Institute of Diabetes and Digestive and Kidney Diseases (T32 DK007028), the Massachusetts General Hospital Executive Committee on Research Fund for Medical Discovery, Harvard Catalyst, Doris Duke Charitable Foundation (award 2013110), Charles H. Hood Foundation, Robert and Laura Reynolds MGH Research Scholar Program, and Harvard University. These funding sources had no role in the design of this study and did not have any role in conducting the study, analyses, interpretation of the data, or the decision to submit results.
Yee-Ming Chan, Margaret F. Lippincott, Temitope O. Kusa, Stephanie B. Seminara
Preeclampsia (PE), associates with long-term increased risk for cardiovascular disease in women, suggesting that PE is not an isolated disease of pregnancy. It is not known if increased risk for long-term diseases is due to PE-specific factors or to prepregnancy renal and cardiovascular risk factors. We used a mouse model in which a WT female with normal prepregnancy health develops PE to investigate if preeclampsia causes long-term cardiovascular consequences after pregnancy for mothers and offspring. Mothers exhibited endothelial dysfunction and hypertension after PE and had glomerular injury that not only persisted but deteriorated, leading to fibrosis. Left ventricular (LV) remodeling characterized by increased collagen deposition and MMP-9 expression and enlarged cardiomyocytes were also detected after PE. Increased LV internal wall thickness and mass, increased end diastolic and end systolic volumes, and increased stroke volume were observed after PE in the mothers. Placenta-derived bioactive factors that modulate vascular function, markers of metabolic disease, vasoconstrictor isoprostane-8, and proinflammatory mediators were increased in sera during and after a preeclamptic pregnancy in the mother. Offspring of PE mice developed endothelial dysfunction, hypertension, and signs of metabolic disease. Microglia activation was increased in the neonatal brains after PE, suggesting neurogenic hypertension in offspring. Prevention of placental insufficiency with pravastatin prevented PE-associated cardiovascular complications in both mothers and offspring. In conclusion, factors that develop during PE have long-term, cardiovascular effects in the mother and offspring independent of prepregnancy risk factors.
Nicola Garrett, Joaquim Pombo, Michelle Umpierrez, James E. Clark, Mark Simmons, Guillermina Girardi
Neutrophil infiltration of the chorioamnion-decidua tissue at the maternal-fetal interface (chorioamnionitis) is a leading cause of prematurity, fetal inflammation, and perinatal mortality. We induced chorioamnionitis in preterm rhesus macaques by intraamniotic injection of LPS. Here, we show that, during chorioamnionitis, the amnion upregulated phospho-IRAK1–expressed neutrophil chemoattractants CXCL8 and CSF3 in an IL-1–dependent manner. IL-1R blockade decreased chorio-decidua neutrophil accumulation, neutrophil activation, and IL-6 and prostaglandin E2 concentrations in the amniotic fluid. Neutrophils accumulating in the chorio-decidua had increased survival mediated by BCL2A1, and IL-1R blockade also decreased BCL2A1+ chorio-decidua neutrophils. Readouts for inflammation in a cohort of women with preterm delivery and chorioamnionitis were similar to findings in the rhesus macaques. IL-1 is a potential therapeutic target for chorioamnionitis and associated morbidities.
Pietro Presicce, Chan-Wook Park, Paranthaman Senthamaraikannan, Sandip Bhattacharyya, Courtney Jackson, Fansheng Kong, Cesar M. Rueda, Emily DeFranco, Lisa A. Miller, David A. Hildeman, Nathan Salomonis, Claire A. Chougnet, Alan H. Jobe, Suhas G. Kallapur
The role of PI3K in leptin physiology has been difficult to determine due to its actions downstream of several metabolic cues, including insulin. Here, we used a series of mouse models to dissociate the roles of specific PI3K catalytic subunits and of insulin receptor (InsR) downstream of leptin signaling. We show that disruption of p110α and p110β subunits in leptin receptor cells (LRΔα+β) produces a lean phenotype associated with increased energy expenditure, locomotor activity, and thermogenesis. LRΔα+β mice have deficient growth and delayed puberty. Single subunit deletion (i.e., p110α in LRΔα) resulted in similarly increased energy expenditure, deficient growth, and pubertal development, but LRΔα mice have normal locomotor activity and thermogenesis. Blunted PI3K in leptin receptor (LR) cells enhanced leptin sensitivity in metabolic regulation due to increased basal hypothalamic pAKT, leptin-induced pSTAT3, and decreased PTEN levels. However, these mice are unresponsive to leptin’s effects on growth and puberty. We further assessed if these phenotypes were associated with disruption of insulin signaling. LRΔInsR mice have no metabolic or growth deficit and show only mild delay in pubertal completion. Our findings demonstrate that PI3K in LR cells plays an essential role in energy expenditure, growth, and reproduction. These actions are independent from insulin signaling.
David Garcia-Galiano, Beatriz C. Borges, Jose Donato Jr., Susan J. Allen, Nicole Bellefontaine, Mengjie Wang, Jean J. Zhao, Kenneth M. Kozloff, Jennifer W. Hill, Carol F. Elias
The testicular dysgenesis syndrome (TDS) hypothesis, which proposes that common reproductive disorders of newborn and adult human males may have a common fetal origin, is largely untested. We tested this hypothesis using a rat model involving gestational exposure to dibutyl phthalate (DBP), which suppresses testosterone production by the fetal testis. We evaluated if induction of TDS via testosterone suppression is restricted to the “masculinization programming window” (MPW), as indicated by reduction in anogenital distance (AGD). We show that DBP suppresses fetal testosterone equally during and after the MPW, but only DBP exposure in the MPW causes reduced AGD, focal testicular dysgenesis, and TDS disorders (cryptorchidism, hypospadias, reduced adult testis size, and compensated adult Leydig cell failure). Focal testicular dysgenesis, reduced size of adult male reproductive organs, and TDS disorders and their severity were all strongly associated with reduced AGD. We related our findings to human TDS cases by demonstrating similar focal dysgenetic changes in testes of men with preinvasive germ cell neoplasia (GCNIS) and in testes of DBP-MPW animals. If our results are translatable to humans, they suggest that identification of potential causes of human TDS disorders should focus on exposures during a human MPW equivalent, especially if negatively associated with offspring AGD.
Sander van den Driesche, Karen R. Kilcoyne, Ida Wagner, Diane Rebourcet, Ashley Boyle, Rod Mitchell, Chris McKinnell, Sheila Macpherson, Roland Donat, Chitranjan J. Shukla, Anne Jorgensen, Ewa Rajpert-De Meyts, Niels E. Skakkebaek, Richard M. Sharpe
The placenta is a barrier against maternal-fetal transmission of pathogens. Placental infections can cause several adverse pregnancy outcomes, including preterm birth (PTB). Yet, we have limited knowledge regarding the mechanisms the placenta uses to control infections. Here, we show that autophagy, a cellular recycling pathway important for host defense against pathogens, and the autophagy gene Atg16L1 play a key role in placental defense and are negatively associated with PTB in pregnant women. First, we demonstrate that placentas from women who delivered preterm exhibit reduced autophagy activity and are associated with higher infection indicators. Second, we identify the cellular location of the autophagy activity as being in syncytial trophoblasts. Third, we demonstrate that higher levels of autophagy and ATG16L1 in human trophoblasts were associated with increased resistance to infection. Accordingly, loss of autophagy or ATG16L1 impaired trophoblast antibacterial defenses. Fourth, we show that
Bin Cao, Colin Macones, Indira U. Mysorekar
The strong association of Zika virus infection with congenital defects has led to questions of how a flavivirus is capable of crossing the placental barrier to reach the fetal brain. Here, we demonstrate permissive Zika virus infection of primary human placental macrophages, commonly referred to as Hofbauer cells, and placental villous fibroblasts. We also demonstrate Zika virus infection of Hofbauer cells within the context of the tissue ex vivo using term placental villous explants. In addition to amplifying infectious virus within a usually inaccessible area, the putative migratory activities of Hofbauer cells may aid in dissemination of Zika virus to the fetal brain. Understanding the susceptibility of placenta-specific cell types will aid future work around and understanding of Zika virus–associated pregnancy complications.
Kellie Ann Jurado, Michael K. Simoni, Zhonghua Tang, Ryuta Uraki, Jesse Hwang, Sarah Householder, Mingjie Wu, Brett D. Lindenbach, Vikki M. Abrahams, Seth Guller, Erol Fikrig
Over one-fifth of North American women of childbearing age are obese, putting these women at risk for a variety of detrimental chronic diseases. In addition, obesity increases the risk for developing major complications during pregnancy. The mechanisms by which obesity contributes to pregnancy complications and loss remain unknown. Increasing evidence indicates that obesity results in major changes to adipose tissue immune cell composition and function; whether or not obesity also affects immune function in the uterus has not been explored. Here we investigated the effect of obesity on uterine natural killer (uNK) cells, which are essential for uterine artery remodeling and placental development. Using a cohort of obese or lean women, we found that obesity led to a significant reduction in uNK cell numbers accompanied with impaired uterine artery remodeling. uNK cells isolated from obese women had altered expression of genes and pathways associated with extracellular matrix remodeling and growth factor signaling. Specifically, uNK cells were hyper-responsive to PDGF, resulting in overexpression of decorin. Functionally, decorin strongly inhibited placental development by limiting trophoblast survival. Together, these findings establish a potentially new link between obesity and poor pregnancy outcomes, and indicate that obesity-driven changes to uterine-resident immune cells critically impair placental development.
Sofie Perdu, Barbara Castellana, Yoona Kim, Kathy Chan, Lauren DeLuca, Alexander G. Beristain
No posts were found with this tag.