Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Pulmonology

  • 349 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 32
  • 33
  • 34
  • 35
  • Next →
Defective postsecretory maturation of MUC5B mucin in cystic fibrosis airways
Lubna H. Abdullah, Jessica R. Evans, T. Tiffany Wang, Amina A. Ford, Alexander M. Makhov, Kristine Nguyen, Raymond D. Coakley, Jack D. Griffith, C. William Davis, Stephen T. Ballard, Mehmet Kesimer
Lubna H. Abdullah, Jessica R. Evans, T. Tiffany Wang, Amina A. Ford, Alexander M. Makhov, Kristine Nguyen, Raymond D. Coakley, Jack D. Griffith, C. William Davis, Stephen T. Ballard, Mehmet Kesimer
View: Text | PDF

Defective postsecretory maturation of MUC5B mucin in cystic fibrosis airways

  • Text
  • PDF
Abstract

In cystic fibrosis (CF), airway mucus becomes thick and viscous, and its clearance from the airways is impaired. The gel-forming mucins undergo an ordered “unpacking/maturation” process after granular release that requires an optimum postsecretory environment, including hydration and pH. We hypothesized that this unpacking process is compromised in the CF lung due to abnormal transepithelial fluid transport that reduces airway surface hydration and alters ionic composition. Using human tracheobronchial epithelial cells derived from non-CF and CF donors and mucus samples from human subjects and domestic pigs, we investigated the process of postsecretory mucin unfolding/maturation, how these processes are defective in CF airways, and the probable mechanism underlying defective unfolding. First, we found that mucins released into a normal lung environment transform from a compact granular form to a linear form. Second, we demonstrated that this maturation process is defective in the CF airway environment. Finally, we demonstrated that independent of HCO3− and pH levels, airway surface dehydration was the major determinant of this abnormal unfolding process. This defective unfolding/maturation process after granular release suggests that the CF extracellular environment is ion/water depleted and likely contributes to abnormal mucus properties in CF airways prior to infection and inflammation.

Authors

Lubna H. Abdullah, Jessica R. Evans, T. Tiffany Wang, Amina A. Ford, Alexander M. Makhov, Kristine Nguyen, Raymond D. Coakley, Jack D. Griffith, C. William Davis, Stephen T. Ballard, Mehmet Kesimer

×

Platelets from pulmonary hypertension patients show increased mitochondrial reserve capacity
Quyen L. Nguyen, Catherine Corey, Pamela White, Annie Watson, Mark T. Gladwin, Marc A. Simon, Sruti Shiva
Quyen L. Nguyen, Catherine Corey, Pamela White, Annie Watson, Mark T. Gladwin, Marc A. Simon, Sruti Shiva
View: Text | PDF

Platelets from pulmonary hypertension patients show increased mitochondrial reserve capacity

  • Text
  • PDF
Abstract

Accumulating evidence suggests that altered cellular metabolism is systemic in pulmonary hypertension (PH) and central to disease pathogenesis. However, bioenergetic changes in PH patients and their association with disease severity remain unclear. Here, we hypothesize that alteration in bioenergetic function is present in platelets from PH patients and correlates with clinical parameters of PH. Platelets isolated from controls and PH patients (n = 28) were subjected to extracellular flux analysis to determine oxygen consumption and glycolytic rates. Platelets from PH patients showed greater glycolytic rates than controls. Surprisingly, this was accompanied by significant increases in the maximal capacity for oxygen consumption, leading to enhanced respiratory reserve capacity in PH platelets. This increased platelet reserve capacity correlated with mean pulmonary artery pressure, pulmonary vascular resistance, and right ventricular stroke work index in PH patients and was abolished by the inhibition of fatty acid oxidation (FAO). Consistent with a shift to FAO, PH platelets showed augmented enzymatic activity of carnitine palmitoyltransferase-1 and electron transport chain complex II. These data extend the observation of a metabolic alteration in PH from the pulmonary vascular axis to the hematologic compartment and suggest that measurement of platelet bioenergetics is potentially useful in assessment of disease progression and severity.

Authors

Quyen L. Nguyen, Catherine Corey, Pamela White, Annie Watson, Mark T. Gladwin, Marc A. Simon, Sruti Shiva

×

Assessment of ciliary phenotype in primary ciliary dyskinesia by micro-optical coherence tomography
George M. Solomon, Richard Francis, Kengyeh K. Chu, Susan E. Birket, George Gabriel, John E. Trombley, Kristi L. Lemke, Nikolai Klena, Brett Turner, Guillermo J. Tearney, Cecilia W. Lo, Steven M. Rowe
George M. Solomon, Richard Francis, Kengyeh K. Chu, Susan E. Birket, George Gabriel, John E. Trombley, Kristi L. Lemke, Nikolai Klena, Brett Turner, Guillermo J. Tearney, Cecilia W. Lo, Steven M. Rowe
View: Text | PDF

Assessment of ciliary phenotype in primary ciliary dyskinesia by micro-optical coherence tomography

  • Text
  • PDF
Abstract

Ciliary motion defects cause defective mucociliary transport (MCT) in primary ciliary dyskinesia (PCD). Current diagnostic tests do not assess how MCT is affected by perturbation of ciliary motion. In this study, we sought to use micro-optical coherence tomography (μOCT) to delineate the mechanistic basis of cilia motion defects of PCD genes by functional categorization of cilia motion. Tracheae from three PCD mouse models were analyzed using μOCT to characterize ciliary motion and measure MCT. We developed multiple measures of ciliary activity, integrated these measures, and quantified dyskinesia by the angular range of the cilia effective stroke (ARC). Ccdc39–/– mice, with a known severe PCD mutation of ciliary axonemal organization, had absent motile ciliary regions, resulting in abrogated MCT. In contrast, Dnah5–/– mice, with a missense mutation of the outer dynein arms, had reduced ciliary beat frequency (CBF) but preserved motile area and ciliary stroke, maintaining some MCT. Wdr69–/– PCD mice exhibited normal motile area and CBF and partially delayed MCT due to abnormalities of ciliary ARC. Visualization of ciliary motion using μOCT provides quantitative assessment of ciliary motion and MCT. Comprehensive ciliary motion investigation in situ classifies ciliary motion defects and quantifies their contribution to delayed mucociliary clearance.

Authors

George M. Solomon, Richard Francis, Kengyeh K. Chu, Susan E. Birket, George Gabriel, John E. Trombley, Kristi L. Lemke, Nikolai Klena, Brett Turner, Guillermo J. Tearney, Cecilia W. Lo, Steven M. Rowe

×

Hsp90 regulation of fibroblast activation in pulmonary fibrosis
Vishwaraj Sontake, Yunguan Wang, Rajesh K. Kasam, Debora Sinner, Geereddy B. Reddy, Anjaparavanda P. Naren, Francis X. McCormack, Eric S. White, Anil G. Jegga, Satish K. Madala
Vishwaraj Sontake, Yunguan Wang, Rajesh K. Kasam, Debora Sinner, Geereddy B. Reddy, Anjaparavanda P. Naren, Francis X. McCormack, Eric S. White, Anil G. Jegga, Satish K. Madala
View: Text | PDF

Hsp90 regulation of fibroblast activation in pulmonary fibrosis

  • Text
  • PDF
Abstract

Idiopathic pulmonary fibrosis (IPF) is a severe fibrotic lung disease associated with fibroblast activation that includes excessive proliferation, tissue invasiveness, myofibroblast transformation, and extracellular matrix (ECM) production. To identify inhibitors that can attenuate fibroblast activation, we queried IPF gene signatures against a library of small-molecule-induced gene-expression profiles and identified Hsp90 inhibitors as potential therapeutic agents that can suppress fibroblast activation in IPF. Although Hsp90 is a molecular chaperone that regulates multiple processes involved in fibroblast activation, it has not been previously proposed as a molecular target in IPF. Here, we found elevated Hsp90 staining in lung biopsies of patients with IPF. Notably, fibroblasts isolated from fibrotic lesions showed heightened Hsp90 ATPase activity compared with normal fibroblasts. 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), a small-molecule inhibitor of Hsp90 ATPase activity, attenuated fibroblast activation and also TGF-β–driven effects on fibroblast to myofibroblast transformation. The loss of the Hsp90AB, but not the Hsp90AA isoform, resulted in reduced fibroblast proliferation, myofibroblast transformation, and ECM production. Finally, in vivo therapy with 17-AAG attenuated progression of established and ongoing fibrosis in a mouse model of pulmonary fibrosis, suggesting that targeting Hsp90 represents an effective strategy for the treatment of fibrotic lung disease.

Authors

Vishwaraj Sontake, Yunguan Wang, Rajesh K. Kasam, Debora Sinner, Geereddy B. Reddy, Anjaparavanda P. Naren, Francis X. McCormack, Eric S. White, Anil G. Jegga, Satish K. Madala

×

α2-Adrenergic blockade rescues hypoglossal motor defense against obstructive sleep apnea
Gang Song, Chi-Sang Poon
Gang Song, Chi-Sang Poon
View: Text | PDF

α2-Adrenergic blockade rescues hypoglossal motor defense against obstructive sleep apnea

  • Text
  • PDF
Abstract

Decreased noradrenergic excitation of hypoglossal motoneurons during sleep causing hypotonia of pharyngeal dilator muscles is a major contributor to the pathogenesis of obstructive sleep apnea (OSA), a widespread disease for which treatment options are limited. Previous OSA drug candidates targeting various excitatory/inhibitory receptors on hypoglossal motoneurons have proved unviable in reactivating these neurons, particularly during rapid-eye-movement (REM) sleep. To identify a viable drug target, we show that the repurposed α2-adrenergic antagonist yohimbine potently reversed the depressant effect of REM sleep on baseline hypoglossal motoneuron activity (a first-line motor defense against OSA) in rats. Remarkably, yohimbine also restored the obstructive apnea–induced long-term facilitation of hypoglossal motoneuron activity (hLTF), a much-neglected form of noradrenergic-dependent neuroplasticity that could provide a second-line motor defense against OSA but was also depressed during REM sleep. Corroborating immunohistologic, optogenetic, and pharmacologic evidence confirmed that yohimbine’s beneficial effects on baseline hypoglossal motoneuron activity and hLTF were mediated mainly through activation of pontine A7 and A5 noradrenergic neurons. Our results suggest a 2-tier (impaired first- and second-line motor defense) mechanism of noradrenergic-dependent pathogenesis of OSA and a promising pharmacotherapy for rescuing both these intrinsic defenses against OSA through disinhibition of A7 and A5 neurons by α2-adrenergic blockade.

Authors

Gang Song, Chi-Sang Poon

×

Mitochondrial CaMKII inhibition in airway epithelium protects against allergic asthma
Sara C. Sebag, Olha M. Koval, John D. Paschke, Christopher J. Winters, Omar A. Jaffer, Ryszard Dworski, Fayyaz S. Sutterwala, Mark E. Anderson, Isabella M. Grumbach
Sara C. Sebag, Olha M. Koval, John D. Paschke, Christopher J. Winters, Omar A. Jaffer, Ryszard Dworski, Fayyaz S. Sutterwala, Mark E. Anderson, Isabella M. Grumbach
View: Text | PDF

Mitochondrial CaMKII inhibition in airway epithelium protects against allergic asthma

  • Text
  • PDF
Abstract

Excessive ROS promote allergic asthma, a condition characterized by airway inflammation, eosinophilic inflammation, and increased airway hyperreactivity (AHR). The mechanisms by which airway ROS are increased and the relationship between increased airway ROS and disease phenotypes are incompletely defined. Mitochondria are an important source of cellular ROS production, and our group discovered that Ca2+/calmodulin-dependent protein kinase II (CaMKII) is present in mitochondria and activated by oxidation. Furthermore, mitochondrial-targeted antioxidant therapy reduced the severity of allergic asthma in a mouse model. Based on these findings, we developed a mouse model of CaMKII inhibition targeted to mitochondria in airway epithelium. We challenged these mice with OVA or Aspergillus fumigatus. Mitochondrial CaMKII inhibition abrogated AHR, inflammation, and eosinophilia following OVA and A. fumigatus challenge. Mitochondrial ROS were decreased after agonist stimulation in the presence of mitochondrial CaMKII inhibition. This correlated with blunted induction of NF-κB, the NLRP3 inflammasome, and eosinophilia in transgenic mice. These findings demonstrate a pivotal role for mitochondrial CaMKII in airway epithelium in mitochondrial ROS generation, eosinophilic inflammation, and AHR, providing insights into how mitochondrial ROS mediate features of allergic asthma.

Authors

Sara C. Sebag, Olha M. Koval, John D. Paschke, Christopher J. Winters, Omar A. Jaffer, Ryszard Dworski, Fayyaz S. Sutterwala, Mark E. Anderson, Isabella M. Grumbach

×

3D pulmospheres serve as a personalized and predictive multicellular model for assessment of antifibrotic drugs
Ranu Surolia, Fu Jun Li, Zheng Wang, Huashi Li, Gang Liu, Yong Zhou, Tracy Luckhardt, Sejong Bae, Rui-ming Liu, Sunad Rangarajan, Joao de Andrade, Victor J. Thannickal, Veena B. Antony
Ranu Surolia, Fu Jun Li, Zheng Wang, Huashi Li, Gang Liu, Yong Zhou, Tracy Luckhardt, Sejong Bae, Rui-ming Liu, Sunad Rangarajan, Joao de Andrade, Victor J. Thannickal, Veena B. Antony
View: Text | PDF | Corrigendum

3D pulmospheres serve as a personalized and predictive multicellular model for assessment of antifibrotic drugs

  • Text
  • PDF
Abstract

Idiopathic pulmonary fibrosis (IPF) is a fatal progressive fibrotic lung disease characterized by the presence of invasive myofibroblasts in the lung. Currently, there are only two FDA-approved drugs (pirfenidone and nintedanib) for the treatment of IPF. There are no defined criteria to guide specific drug therapy. New methodologies are needed not only to predict personalized drug therapy, but also to screen novel molecules that are on the horizon for treatment of IPF. We have developed a model system that exploits the invasive phenotype of IPF lung tissue. This ex vivo 3D model uses lung tissue from patients to develop pulmospheres. Pulmospheres are 3D spheroids composed of cells derived exclusively from primary lung biopsies and inclusive of lung cell types reflective of those in situ, in the patient. We tested the pulmospheres of 20 subjects with IPF and 9 control subjects to evaluate the responsiveness of individual patients to antifibrotic drugs. Clinical parameters and outcomes were also followed in the same patients. Our results suggest that pulmospheres simulate the microenvironment in the lung and serve as a personalized and predictive model for assessing responsiveness to antifibrotic drugs in patients with IPF.

Authors

Ranu Surolia, Fu Jun Li, Zheng Wang, Huashi Li, Gang Liu, Yong Zhou, Tracy Luckhardt, Sejong Bae, Rui-ming Liu, Sunad Rangarajan, Joao de Andrade, Victor J. Thannickal, Veena B. Antony

×

Oxidized CaMKII promotes asthma through the activation of mast cells
Jingjing Qu, Danh C. Do, Yufeng Zhou, Elizabeth Luczak, Wayne Mitzner, Mark E. Anderson, Peisong Gao
Jingjing Qu, Danh C. Do, Yufeng Zhou, Elizabeth Luczak, Wayne Mitzner, Mark E. Anderson, Peisong Gao
View: Text | PDF

Oxidized CaMKII promotes asthma through the activation of mast cells

  • Text
  • PDF
Abstract

Oxidation of calmodulin-dependent protein kinase II (ox-CaMKII) by ROS has been associated with asthma. However, the contribution of ox-CaMKII to the development of asthma remains to be fully characterized. Here, we tested the effect of ox-CaMKII on IgE-mediated mast cell activation in an allergen-induced mouse model of asthma using oxidant-resistant CaMKII MMVVδ knockin (MMVVδ) mice. Compared with WT mice, the allergen-challenged MMVVδ mice displayed less airway hyperresponsiveness (AHR) and inflammation. These MMVVδ mice exhibited reduced levels of ROS and diminished recruitment of mast cells to the lungs. OVA-activated bone marrow–derived mast cells (BMMCs) from MMVVδ mice showed a significant inhibition of ROS and ox-CaMKII expression. ROS generation was dependent on intracellular Ca2+ concentration in BMMCs. Importantly, OVA-activated MMVVδ BMMCs had suppressed degranulation, histamine release, leukotriene C4, and IL-13 expression. Adoptive transfer of WT, but not MMVVδ, BMMCs, reversed the alleviated AHR and inflammation in allergen-challenged MMVVδ mice. The CaMKII inhibitor KN-93 significantly suppressed IgE-mediated mast cell activation and asthma. These studies support a critical but previously unrecognized role of ox-CaMKII in mast cells that promotes asthma and suggest that therapies to reduce ox-CaMKII may be a novel approach for asthma.

Authors

Jingjing Qu, Danh C. Do, Yufeng Zhou, Elizabeth Luczak, Wayne Mitzner, Mark E. Anderson, Peisong Gao

×

miR-323a-3p regulates lung fibrosis by targeting multiple profibrotic pathways
Lingyin Ge, David M. Habiel, Phil M. Hansbro, Richard Y. Kim, Sina A. Gharib, Jeffery D. Edelman, Melanie Königshoff, Tanyalak Parimon, Rena Brauer, Ying Huang, Jenieke Allen, Dianhua Jiang, Adrianne A. Kurkciyan, Takako Mizuno, Barry R. Stripp, Paul W. Noble, Cory M. Hogaboam, Peter Chen
Lingyin Ge, David M. Habiel, Phil M. Hansbro, Richard Y. Kim, Sina A. Gharib, Jeffery D. Edelman, Melanie Königshoff, Tanyalak Parimon, Rena Brauer, Ying Huang, Jenieke Allen, Dianhua Jiang, Adrianne A. Kurkciyan, Takako Mizuno, Barry R. Stripp, Paul W. Noble, Cory M. Hogaboam, Peter Chen
View: Text | PDF

miR-323a-3p regulates lung fibrosis by targeting multiple profibrotic pathways

  • Text
  • PDF
Abstract

Maladaptive epithelial repair from chronic injury is a common feature in fibrotic diseases, which in turn activates a pathogenic fibroblast response that produces excessive matrix deposition. Dysregulated microRNAs (miRs) can regulate expression of multiple genes and fundamentally alter cellular phenotypes during fibrosis. Although several miRs have been shown to be associated with lung fibrosis, the mechanisms by which miRs modulate epithelial behavior in lung fibrosis are lacking. Here, we identified miR-323a-3p to be downregulated in the epithelium of lungs with bronchiolitis obliterans syndrome (BOS) after lung transplantation, idiopathic pulmonary fibrosis (IPF), and murine bleomycin-induced fibrosis. Antagomirs for miR-323a-3p augment, and mimics suppress, murine lung fibrosis after bleomycin injury, indicating that this miR may govern profibrotic signals. We demonstrate that miR-323a-3p attenuates TGF-α and TGF-β signaling by directly targeting key adaptors in these important fibrogenic pathways. Moreover, miR-323a-3p lowers caspase-3 expression, thereby limiting programmed cell death from inducers of apoptosis and ER stress. Finally, we find that epithelial expression of miR-323a-3p modulates inhibitory crosstalk with fibroblasts. These studies demonstrate that miR-323a-3p has a central role in lung fibrosis that spans across murine and human disease, and downregulated expression by the lung epithelium releases inhibition of various profibrotic pathways to promote fibroproliferation.

Authors

Lingyin Ge, David M. Habiel, Phil M. Hansbro, Richard Y. Kim, Sina A. Gharib, Jeffery D. Edelman, Melanie Königshoff, Tanyalak Parimon, Rena Brauer, Ying Huang, Jenieke Allen, Dianhua Jiang, Adrianne A. Kurkciyan, Takako Mizuno, Barry R. Stripp, Paul W. Noble, Cory M. Hogaboam, Peter Chen

×

DNA methylation in lung cells is associated with asthma endotypes and genetic risk
Jessie Nicodemus-Johnson, Rachel A. Myers, Noburu J. Sakabe, Debora R. Sobreira, Douglas K. Hogarth, Edward T. Naureckas, Anne I. Sperling, Julian Solway, Steven R. White, Marcelo A. Nobrega, Dan L. Nicolae, Yoav Gilad, Carole Ober
Jessie Nicodemus-Johnson, Rachel A. Myers, Noburu J. Sakabe, Debora R. Sobreira, Douglas K. Hogarth, Edward T. Naureckas, Anne I. Sperling, Julian Solway, Steven R. White, Marcelo A. Nobrega, Dan L. Nicolae, Yoav Gilad, Carole Ober
View: Text | PDF

DNA methylation in lung cells is associated with asthma endotypes and genetic risk

  • Text
  • PDF
Abstract

The epigenome provides a substrate through which environmental exposures can exert their effects on gene expression and disease risk, but the relative importance of epigenetic variation on human disease onset and progression is poorly characterized. Asthma is a heterogeneous disease of the airways, for which both onset and clinical course result from interactions between host genotype and environmental exposures, yet little is known about the molecular mechanisms for these interactions. We assessed genome-wide DNA methylation using the Infinium Human Methylation 450K Bead Chip and characterized the transcriptome by RNA sequencing in primary airway epithelial cells from 74 asthmatic and 41 nonasthmatic adults. Asthma status was based on doctor’s diagnosis and current medication use. Genotyping was performed using various Illumina platforms. Our study revealed a regulatory locus on chromosome 17q12-21 associated with asthma risk and epigenetic signatures of specific asthma endotypes and molecular networks. Overall, these data support a central role for DNA methylation in lung cells, which promotes distinct molecular pathways of asthma pathogenesis and modulates the effects of genetic variation on disease risk and clinical heterogeneity.

Authors

Jessie Nicodemus-Johnson, Rachel A. Myers, Noburu J. Sakabe, Debora R. Sobreira, Douglas K. Hogarth, Edward T. Naureckas, Anne I. Sperling, Julian Solway, Steven R. White, Marcelo A. Nobrega, Dan L. Nicolae, Yoav Gilad, Carole Ober

×
  • ← Previous
  • 1
  • 2
  • …
  • 32
  • 33
  • 34
  • 35
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts