Go to The Journal of Clinical Investigation
Insight white on transparent.20160208
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All...
  • Videos
  • Collections
    • Recently published
    • Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

Insight white on transparent small

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Transfers
  • Current issue
  • Past issues
  • By specialty
  • Contact
  • Recently published
  • Technical Advances
  • Clinical Medicine
  • Editorials
  • Top read articles
Oxidized CaMKII promotes asthma through the activation of mast cells
Jingjing Qu, … , Mark E. Anderson, Peisong Gao
Jingjing Qu, … , Mark E. Anderson, Peisong Gao
Published January 12, 2017
Citation Information: JCI Insight. 2017;2(1):e90139. https://doi.org/10.1172/jci.insight.90139.
View: Text | PDF
Categories: Research Article Immunology Pulmonology

Oxidized CaMKII promotes asthma through the activation of mast cells

  • Text
  • PDF
Abstract

Oxidation of calmodulin-dependent protein kinase II (ox-CaMKII) by ROS has been associated with asthma. However, the contribution of ox-CaMKII to the development of asthma remains to be fully characterized. Here, we tested the effect of ox-CaMKII on IgE-mediated mast cell activation in an allergen-induced mouse model of asthma using oxidant-resistant CaMKII MMVVδ knockin (MMVVδ) mice. Compared with WT mice, the allergen-challenged MMVVδ mice displayed less airway hyperresponsiveness (AHR) and inflammation. These MMVVδ mice exhibited reduced levels of ROS and diminished recruitment of mast cells to the lungs. OVA-activated bone marrow–derived mast cells (BMMCs) from MMVVδ mice showed a significant inhibition of ROS and ox-CaMKII expression. ROS generation was dependent on intracellular Ca2+ concentration in BMMCs. Importantly, OVA-activated MMVVδ BMMCs had suppressed degranulation, histamine release, leukotriene C4, and IL-13 expression. Adoptive transfer of WT, but not MMVVδ, BMMCs, reversed the alleviated AHR and inflammation in allergen-challenged MMVVδ mice. The CaMKII inhibitor KN-93 significantly suppressed IgE-mediated mast cell activation and asthma. These studies support a critical but previously unrecognized role of ox-CaMKII in mast cells that promotes asthma and suggest that therapies to reduce ox-CaMKII may be a novel approach for asthma.

Authors

Jingjing Qu, Danh C. Do, Yufeng Zhou, Elizabeth Luczak, Wayne Mitzner, Mark E. Anderson, Peisong Gao

×

Full Text PDF | Download (3.00 MB)

Follow JCI Insight: Facebook logo white Twitter logo v2 Rss icon
Copyright © 2019 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts