Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Pulmonologies

  • 252 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 24
  • 25
  • 26
  • Next →
Vaccinia vaccine–based immunotherapy arrests and reverses established pulmonary fibrosis
Samuel L. Collins, … , Jonathan D. Powell, Maureen R. Horton
Samuel L. Collins, … , Jonathan D. Powell, Maureen R. Horton
Published April 7, 2016
Citation Information: JCI Insight. 2016;1(4):e83116. https://doi.org/10.1172/jci.insight.83116.
View: Text | PDF

Vaccinia vaccine–based immunotherapy arrests and reverses established pulmonary fibrosis

  • Text
  • PDF
Abstract

Idiopathic pulmonary fibrosis (IPF) is a fatal disease without any cure. Both human disease and animal models demonstrate dysregulated wound healing and unregulated fibrogenesis in a background of low-grade chronic T lymphocyte infiltration. Tissue-resident memory T cells (Trm) are emerging as important regulators of the immune microenvironment in response to pathogens, and we hypothesized that they might play a role in regulating the unremitting inflammation that promotes lung fibrosis. Herein, we demonstrate that lung-directed immunotherapy, in the form of i.n. vaccination, induces an antifibrotic T cell response capable of arresting and reversing lung fibrosis. In mice with established lung fibrosis, lung-specific T cell responses were able to reverse established pathology — as measured by decreased lung collagen, fibrocytes, and histologic injury — and improve physiologic function. Mechanistically, we demonstrate that this effect is mediated by vaccine-induced lung Trm. These data not only have implications for the development of immunotherapeutic regimens to treat IPF, but also suggest a role for targeting tissue-resident memory T cells to treat other tissue-specific inflammatory/autoimmune disorders.

Authors

Samuel L. Collins, Yee Chan-Li, MinHee Oh, Christine L. Vigeland, Nathachit Limjunyawong, Wayne Mitzner, Jonathan D. Powell, Maureen R. Horton

×

Acute administration of ivacaftor to people with cystic fibrosis and a G551D-CFTR mutation reveals smooth muscle abnormalities
Ryan J. Adam, … , Edward F. McKone, David A. Stoltz
Ryan J. Adam, … , Edward F. McKone, David A. Stoltz
Published April 7, 2016
Citation Information: JCI Insight. 2016;1(4):e86183. https://doi.org/10.1172/jci.insight.86183.
View: Text | PDF

Acute administration of ivacaftor to people with cystic fibrosis and a G551D-CFTR mutation reveals smooth muscle abnormalities

  • Text
  • PDF
Abstract

BACKGROUND. Airflow obstruction is common in cystic fibrosis (CF), yet the underlying pathogenesis remains incompletely understood. People with CF often exhibit airway hyperresponsiveness, CF transmembrane conductance regulator (CFTR) is present in airway smooth muscle (ASM), and ASM from newborn CF pigs has increased contractile tone, suggesting that loss of CFTR causes a primary defect in ASM function. We hypothesized that restoring CFTR activity would decrease smooth muscle tone in people with CF.

METHODS. To increase or potentiate CFTR function, we administered ivacaftor to 12 adults with CF with the G551D-CFTR mutation; ivacaftor stimulates G551D-CFTR function. We studied people before and immediately after initiation of ivacaftor (48 hours) to minimize secondary consequences of CFTR restoration. We tested smooth muscle function by investigating spirometry, airway distensibility, and vascular tone.

RESULTS. Ivacaftor rapidly restored CFTR function, indicated by reduced sweat chloride concentration. Airflow obstruction and air trapping also improved. Airway distensibility increased in airways less than 4.5 mm but not in larger-sized airways. To assess smooth muscle function in a tissue outside the lung, we measured vascular pulse wave velocity (PWV) and augmentation index, which both decreased following CFTR potentiation. Finally, change in distensibility of <4.5-mm airways correlated with changes in PWV.

CONCLUSIONS. Acute CFTR potentiation provided a unique opportunity to investigate CFTR-dependent mechanisms of CF pathogenesis. The rapid effects of ivacaftor on airway distensibility and vascular tone suggest that CFTR dysfunction may directly cause increased smooth muscle tone in people with CF and that ivacaftor may relax smooth muscle.

FUNDING. This work was funded in part from an unrestricted grant from the Vertex Investigator-Initiated Studies Program.

Authors

Ryan J. Adam, Katherine B. Hisert, Jonathan D. Dodd, Brenda Grogan, Janice L. Launspach, Janel K. Barnes, Charles G. Gallagher, Jered P. Sieren, Thomas J. Gross, Anthony J. Fischer, Joseph E. Cavanaugh, Eric A. Hoffman, Pradeep K. Singh, Michael J. Welsh, Edward F. McKone, David A. Stoltz

×
  • ← Previous
  • 1
  • 2
  • …
  • 24
  • 25
  • 26
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts