Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Pulmonology

  • 229 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 22
  • 23
  • Next →
Transcriptional analysis of lung fibroblasts identifies PIM1 signaling as a driver of aging-associated persistent fibrosis
Tho X. Pham, … , Daniel J. Tschumperlin, Giovanni Ligresti
Tho X. Pham, … , Daniel J. Tschumperlin, Giovanni Ligresti
Published February 15, 2022
Citation Information: JCI Insight. 2022. https://doi.org/10.1172/jci.insight.153672.
View: Text | PDF

Transcriptional analysis of lung fibroblasts identifies PIM1 signaling as a driver of aging-associated persistent fibrosis

  • Text
  • PDF
Abstract

Idiopathic pulmonary fibrosis (IPF) is an aging-associated disease characterized by the accumulation of myofibroblasts and progressive lung scarring. To identify transcriptional gene programs driving persistent lung fibrosis in aging, we performed RNA-seq on lung fibroblasts isolated from young and aged mice during the early resolution phase post-bleomycin injury. We discovered that relative to injured young fibroblasts, injured aged fibroblasts exhibited a pro-fibrotic state characterized by elevated expression of genes implicated in inflammation, matrix remodeling, and cell survival. We identified pro-viral integration site of Moloney murine leukemia virus 1 (PIM1) and its target Nuclear Factor of Activated T Cells-1 (NFATc1) as putative drivers of the sustained pro-fibrotic gene signatures in injured aged fibroblasts. PIM1 and NFATc1 transcripts were enriched in a pathogenic fibroblast population recently discovered in IPF lungs, and their protein expression was abundant in fibroblastic foci. Overexpression of PIM1 in normal human lung fibroblasts in vitro potentiated their fibrogenic activation in a NFATc1-dependent manner. Pharmacological inhibition of PIM1 attenuated IPF fibroblast activation and sensitized them to apoptotic stimuli. Inhibition of PIM1 signaling in IPF lung explants ex vivo inhibited pro-survival gene expression and collagen secretion, suggesting that targeting this pathway may represent a therapeutic strategy to block IPF progression.

Authors

Tho X. Pham, Jisu Lee, Jiazhen Guan, Nunzia Caporarello, Jeffrey A. Meridew, Dakota L. Jones, Qi Tan, Steven K. Huang, Daniel J. Tschumperlin, Giovanni Ligresti

×

ADAM8 signaling drives neutrophil migration and ARDS severity
Catharina Conrad, … , Mark R. Looney, Jörg W. Bartsch
Catharina Conrad, … , Mark R. Looney, Jörg W. Bartsch
Published February 8, 2022
Citation Information: JCI Insight. 2022;7(3):e149870. https://doi.org/10.1172/jci.insight.149870.
View: Text | PDF

ADAM8 signaling drives neutrophil migration and ARDS severity

  • Text
  • PDF
Abstract

Acute respiratory distress syndrome (ARDS) results in catastrophic lung failure and has an urgent, unmet need for improved early recognition and therapeutic development. Neutrophil influx is a hallmark of ARDS and is associated with the release of tissue-destructive immune effectors, such as matrix metalloproteinases (MMPs) and membrane-anchored metalloproteinase disintegrins (ADAMs). Here, we observed using intravital microscopy that Adam8–/– mice had impaired neutrophil transmigration. In mouse pneumonia models, both genetic deletion and pharmacologic inhibition of ADAM8 attenuated neutrophil infiltration and lung injury while improving bacterial containment. Unexpectedly, the alterations of neutrophil function were not attributable to impaired proteolysis but resulted from reduced intracellular interactions of ADAM8 with the actin-based motor molecule Myosin1f that suppressed neutrophil motility. In 2 ARDS cohorts, we analyzed lung fluid proteolytic signatures and identified that ADAM8 activity was positively correlated with disease severity. We propose that in acute inflammatory lung diseases such as pneumonia and ARDS, ADAM8 inhibition might allow fine-tuning of neutrophil responses for therapeutic gain.

Authors

Catharina Conrad, Daniela Yildiz, Simon J. Cleary, Andreas Margraf, Lena Cook, Uwe Schlomann, Barry Panaretou, Jessica L. Bowser, Harry Karmouty-Quintana, Jiwen Li, Nathaniel K. Berg, Samuel C. Martin, Ahmad Aljohmani, S. Farshid Moussavi-Harami, Kristin M. Wang, Jennifer J. Tian, Mélia Magnen, Colin Valet, Longhui Qiu, Jonathan P. Singer, Holger K. Eltzschig, CAPSys Study Group, Wilhelm Bertrams, Susanne Herold, Norbert Suttorp, Bernd Schmeck, Zachary T. Ball, Alexander Zarbock, Mark R. Looney, Jörg W. Bartsch

×

Recruitment and training of alveolar macrophages after pneumococcal pneumonia
Emad I. Arafa, … , Lee J. Quinton, Joseph P. Mizgerd
Emad I. Arafa, … , Lee J. Quinton, Joseph P. Mizgerd
Published February 8, 2022
Citation Information: JCI Insight. 2022. https://doi.org/10.1172/jci.insight.150239.
View: Text | PDF

Recruitment and training of alveolar macrophages after pneumococcal pneumonia

  • Text
  • PDF
Abstract

Recovery from pneumococcal pneumonia remodels the pool of alveolar macrophages so that they exhibit new surface marker profiles, transcriptomes, metabolomes, and responses to infection. Mechanisms mediating alveolar macrophage phenotypes after pneumococcal pneumonia have not been delineated. IFNγ and its receptor on alveolar macrophages were essential for aspects but not all of the remodeled alveolar macrophage phenotype. IFNγ was produced by CD4+ T cells plus other cells, and CD4+ cell depletion did not prevent alveolar macrophage remodeling. In mice infected or recovering from pneumococcus, monocytes were recruited to the lungs and the monocyte-derived macrophages developed characteristics of alveolar macrophages. CCR2 mediated the early monocyte recruitment but was not essential to development of the remodeled alveolar macrophage phenotype. Lineage tracing demonstrated that recovery from pneumococcal pneumonias converted the pool of alveolar macrophages from being primarily of embryonic origin to being primarily of adult hematopoietic stem cell origin. Alveolar macrophages of either origin demonstrated similar remodeled phenotypes, suggesting that ontogeny did not dictate phenotype. Altogether, our data reveal that the remodeled alveolar macrophage phenotype in lungs recovered from pneumococcal pneumonia results from a combination of new recruitment plus training of both the original cells and the new recruits.

Authors

Emad I. Arafa, Anukul T. Shenoy, Kimberly A. Barker, Neelou S. Etesami, Ian M.C. Martin, Carolina Lyon De Ana, Elim Na, Christine V. Odom, Wesley N. Goltry, Filiz T. Korkmaz, Alicia K. Wooten, Anna C. Belkina, Antoine Guillon, E. Camilla Forsberg, Matthew R. Jones, Lee J. Quinton, Joseph P. Mizgerd

×

Maladaptive functional changes in alveolar fibroblasts due to perinatal hyperoxia impair epithelial differentiation
Matthew R. Riccetti, … , Shawn K. Ahlfeld, Anne-Karina T. Perl
Matthew R. Riccetti, … , Shawn K. Ahlfeld, Anne-Karina T. Perl
Published February 3, 2022
Citation Information: JCI Insight. 2022. https://doi.org/10.1172/jci.insight.152404.
View: Text | PDF

Maladaptive functional changes in alveolar fibroblasts due to perinatal hyperoxia impair epithelial differentiation

  • Text
  • PDF
Abstract

Infants born prematurely worldwide have up to a 50% chance of developing Bronchopulmonary Dysplasia (BPD), a clinical morbidity characterized by dysregulated lung alveolarization and microvascular development. It is known that Platelet-Derived Growth Factor Receptor Alpha positive (PDGFRA+) fibroblasts are critical for alveolarization, and that PDGFRA+ fibroblasts are reduced in BPD. A better understanding of fibroblast heterogeneity and functional activation status during pathogenesis is required to develop mesenchymal-targeted therapies for BPD. In this study, we utilized a neonatal hyperoxia mouse model (90% O2 PN0-PN7) and performed studies on sorted PDGFRA+ cells during injury and room air recovery. After hyperoxia injury, PDGFRA+ matrix and myofibroblasts decrease and PDGFRA+ lipofibroblasts increase by transcriptional signature and population size. PDGFRA+ matrix and myofibroblast recover during repair (PN10). After 7 days of in vivo hyperoxia, PDGFRA+ sorted fibroblasts have reduced contractility in vitro, reflecting loss of myofibroblast commitment. Organoids made with PN7 PDGFRA+ fibroblasts from hyperoxia mice exhibit reduced alveolar type 1 cell differentiation, suggesting reduced alveolar niche-supporting PDGFRA+ matrix fibroblast function. Pathway analysis predicted reduced WNT signaling in hyperoxia fibroblasts. In alveolar organoids from hyperoxia exposed fibroblasts WNT activation by CHIR increased size and number of alveolar organoids and enhanced alveolar type 2 cell differentiation.

Authors

Matthew R. Riccetti, Mereena George Ushakumary, Marion Waltamath, Jenna Green, John Snowball, Sydney E. Dautel, Mehari Endale, Bonny Lami, Jason Woods, Shawn K. Ahlfeld, Anne-Karina T. Perl

×

Ferret models of alpha-1 antitrypsin deficiency develop lung and liver disease
Nan He, … , John F. Engelhardt, Bradley H. Rosen
Nan He, … , John F. Engelhardt, Bradley H. Rosen
Published February 1, 2022
Citation Information: JCI Insight. 2022. https://doi.org/10.1172/jci.insight.143004.
View: Text | PDF

Ferret models of alpha-1 antitrypsin deficiency develop lung and liver disease

  • Text
  • PDF
Abstract

Alpha-1 antitrypsin (AAT) deficiency (AATD) is the most common genetic cause and risk factor for chronic obstructive pulmonary disease, but the field lacks a large animal model that allows for longitudinal assessment of pulmonary function. We hypothesized that ferrets would model human AATD-related lung and hepatic disease. AAT-knockout (AAT-KO) and PiZZ (E342K, the most common mutation in humans) ferrets were generated and compared to matched controls using custom-designed flexiVent modules to perform pulmonary function tests (PFTs), quantitative computed tomography (QCT), bronchoalveolar lavage (BAL) proteomics, and alveolar morphometry. Complete loss of AAT (AAT-KO) led to increased pulmonary compliance and expiratory airflow limitation, consistent with obstructive lung disease. QCT and morphometry confirmed emphysema and airspace enlargement, respectively. Pathway analysis of BAL proteomics data revealed inflammatory lung disease and impaired cellular migration. The PiZ mutation resulted in altered AAT protein folding in the liver, hepatic injury, reduced plasma concentrations of AAT, and PiZZ ferrets developed obstructive lung disease. In summary, AAT-KO and PiZZ ferrets model the progressive obstructive pulmonary disease seen in AAT-deficient patients and may serve as a platform for preclinical testing of therapeutics including gene therapy.

Authors

Nan He, Xiaoming Liu, Amber R. Vegter, T. Idil A. Evans, Jaimie S. Gray, Junfeng Guo, Shashanna R. Moll, Lydia J. Guo, Meihui Luo, Ningxia Ma, Xingshen Sun, Bo Liang, Ziying Yan, Zehua Feng, Lisi Qi, Arnav S. Joshi, Weam Shahin, Yaling Yi, Katherine N. Gibson-Corley, Eric A. Hoffman, Kai Wang, Christian Mueller, John F. Engelhardt, Bradley H. Rosen

×

A novel in vivo model for extracellular vesicle-induced emphysema
Camilla Margaroli, … , Kristopher R. Genschmer, J. Edwin Blalock
Camilla Margaroli, … , Kristopher R. Genschmer, J. Edwin Blalock
Published January 25, 2022
Citation Information: JCI Insight. 2022. https://doi.org/10.1172/jci.insight.153560.
View: Text | PDF

A novel in vivo model for extracellular vesicle-induced emphysema

  • Text
  • PDF
Abstract

COPD is a debilitating chronic disease and the third cause of mortality worldwide. It is characterized by airway neutrophilia, promoting tissue injury through release of toxic mediators and proteases. Recently, it has been shown that neutrophil-derived extracellular vesicles (EVs) from COPD patient lungs can cause a neutrophil elastase (NE)-dependent COPD-like disease upon transfer to mouse airways. However in vivo preclinical models elucidating the impact of EVs on disease are lacking, delaying opportunities for therapeutic testing. Here, we developed an in vivo preclinical mouse model of lung EV-induced COPD. EVs from in vivo LPS activated mouse neutrophils induced COPD-like disease in naive recipients through an alpha-1 antitrypsin resistant, NE-dependent mechanism. Together, these results show a key pathogenic and mechanistic role for neutrophil-derived EVs in a new mouse model of COPD. Broadly, the in vivo model described herein could be leveraged to develop targeted therapies for severe lung disease.

Authors

Camilla Margaroli, Matthew C. Madison, Liliana Viera, Derek W. Russell, Amit Gaggar, Kristopher R. Genschmer, J. Edwin Blalock

×

Fibrotic lung disease inhibits innate immune responses to Staphylococcal pneumonia via impaired neutrophil and macrophage function
Helen I. Warheit-Niemi, … , David N. O'Dwyer, Bethany B. Moore
Helen I. Warheit-Niemi, … , David N. O'Dwyer, Bethany B. Moore
Published January 6, 2022
Citation Information: JCI Insight. 2022. https://doi.org/10.1172/jci.insight.152690.
View: Text | PDF

Fibrotic lung disease inhibits innate immune responses to Staphylococcal pneumonia via impaired neutrophil and macrophage function

  • Text
  • PDF
Abstract

Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal disease characterized by collagen deposition within the lung interstitium. Bacterial infection is associated with increased morbidity and more rapid mortality in IPF patient populations and pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) are commonly isolated from the lungs of hospitalized IPF patients. Despite this, the effects of fibrotic lung injury on critical immune responses to infection remain unknown. In the present study, we show that, like human IPF, fibrotic mice infected with MRSA exhibit increased morbidity and mortality compared to uninfected fibrotic mice. We determine that fibrosis confers a defect in MRSA clearance compared to non-fibrotic mice, resulting from blunted innate immune responses. We show that fibrosis inhibits neutrophil intracellular killing of MRSA through impaired neutrophil elastase (NE) release and oxidative radical production. Additionally, we demonstrate that lung macrophages from fibrotic mice have impaired phagocytosis of MRSA. Our study describes potentially novel impairments to antimicrobial responses upon the development of pulmonary fibrosis and our findings suggest a possible mechanism for why IPF patients are at greater risk of morbidity and mortality related to infection.

Authors

Helen I. Warheit-Niemi, Summer J. Edwards, Shuvasree SenGupta, Carole A. Parent, Xiaofeng Zhou, David N. O'Dwyer, Bethany B. Moore

×

E4 engages uPAR and enolase-1 and activates urokinase to exert antifibrotic effects
Shailza Sharma, … , Roger A. Chambers, Carol Feghali-Bostwick
Shailza Sharma, … , Roger A. Chambers, Carol Feghali-Bostwick
Published December 22, 2021
Citation Information: JCI Insight. 2021;6(24):e144935. https://doi.org/10.1172/jci.insight.144935.
View: Text | PDF

E4 engages uPAR and enolase-1 and activates urokinase to exert antifibrotic effects

  • Text
  • PDF
Abstract

Fibroproliferative disorders such as systemic sclerosis (SSc) have no effective therapies and result in significant morbidity and mortality. We recently demonstrated that the C-terminal domain of endostatin, known as E4, prevented and reversed both dermal and pulmonary fibrosis. Our goal was to identify the mechanism by which E4 abrogates fibrosis and its cell surface binding partner(s). Our findings show that E4 activated the urokinase pathway and increased the urokinase plasminogen activator (uPA) to type 1 plasminogen activator inhibitor (PAI-1) ratio. In addition, E4 substantially increased MMP-1 and MMP-3 expression and activity. In vivo, E4 reversed bleomycin induction of PAI-1 and increased uPA activity. In patients with SSc, the uPA/PAI-1 ratio was decreased in both lung tissues and pulmonary fibroblasts compared with normal donors. Proteins bound to biotinylated-E4 were identified as enolase-1 (ENO) and uPA receptor (uPAR). The antifibrotic effects of E4 required uPAR. Further, ENO mediated the fibrotic effects of TGF-β1 and exerted TGF-β1–independent fibrotic effects. Our findings suggest that the antifibrotic effect of E4 is mediated, in part, by regulation of the urokinase pathway and induction of MMP-1 and MMP-3 levels and activity in a uPAR-dependent manner, thus promoting extracellular matrix degradation. Further, our findings identify a moonlighting function for the glycolytic enzyme ENO in fibrosis.

Authors

Shailza Sharma, Tomoya Watanabe, Tetsuya Nishimoto, Takahisa Takihara, Logan Mlakar, Xinh-Xinh Nguyen, Matthew Sanderson, Yunyun Su, Roger A. Chambers, Carol Feghali-Bostwick

×

Alveolar epithelial glycocalyx degradation mediates surfactant dysfunction and contributes to acute respiratory distress syndrome
Alicia N. Rizzo, … , Julie A. Bastarache, Eric P. Schmidt
Alicia N. Rizzo, … , Julie A. Bastarache, Eric P. Schmidt
Published December 7, 2021
Citation Information: JCI Insight. 2021. https://doi.org/10.1172/jci.insight.154573.
View: Text | PDF

Alveolar epithelial glycocalyx degradation mediates surfactant dysfunction and contributes to acute respiratory distress syndrome

  • Text
  • PDF
Abstract

Acute Respiratory Distress Syndrome (ARDS) is a common cause of respiratory failure yet has few pharmacologic therapies, reflecting the mechanistic heterogeneity of lung injury. We hypothesized that damage to the alveolar epithelial glycocalyx, a layer of glycosaminoglycans interposed between the epithelium and surfactant, contributes to lung injury in ARDS patients. Using mass spectrometry of airspace fluid noninvasively collected from mechanically-ventilated patients, we found that airspace glycosaminoglycan shedding (an index of glycocalyx degradation) occurred predominantly in patients with direct lung injury and was associated with duration of mechanical ventilation. Male patients had increased shedding which correlated with airspace concentrations of matrix metalloproteinases. Selective epithelial glycocalyx degradation in mice was sufficient to induce surfactant dysfunction, a key characteristic of ARDS, leading to microatelectasis and decreased lung compliance. Rapid colorimetric quantification of airspace glycosaminoglycans was feasible and could provide point-of-care prognostic information to clinicians and/or be used for predictive enrichment in clinical trials.

Authors

Alicia N. Rizzo, Sarah M. Haeger, Kaori Oshima, Yimu Yang, Alison M. Wallbank, Ying Jin, Marie Lettau, Lynda A. McCaig, Nancy E. Wickersham, J. Brennan McNeil, Igor Zakharevich, Sarah A. McMurtry, Christophe J. Langouët-Astrié, Katrina W. Kopf, Dennis R. Voelker, Kirk C. Hansen, Ciara M. Shaver, V. Eric Kerchberger, Ryan A. Peterson, Wolfgang M. Kuebler, Matthias Ochs, Ruud A.W. Veldhuizen, Bradford J. Smith, Lorraine B. Ware, Julie A. Bastarache, Eric P. Schmidt

×

Role of endothelial cells in pulmonary fibrosis via SREBP2 activation
Marcy Martin, … , James S. Hagood, John Y-J. Shyy
Marcy Martin, … , James S. Hagood, John Y-J. Shyy
Published November 22, 2021
Citation Information: JCI Insight. 2021;6(22):e125635. https://doi.org/10.1172/jci.insight.125635.
View: Text | PDF

Role of endothelial cells in pulmonary fibrosis via SREBP2 activation

  • Text
  • PDF
Abstract

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with limited treatment options. Despite endothelial cells (ECs) comprising 30% of the lung cellular composition, the role of EC dysfunction in pulmonary fibrosis (PF) remains unclear. We hypothesize that sterol regulatory element-binding protein 2 (SREBP2) plays a critical role in the pathogenesis of PF via EC phenotypic modifications. Transcriptome data demonstrate that SREBP2 overexpression in ECs led to the induction of the TGF, Wnt, and cytoskeleton remodeling gene ontology pathways and the increased expression of mesenchymal genes, such as snail family transcriptional repressor 1 (snai1), α-smooth muscle actin, vimentin, and neural cadherin. Furthermore, SREBP2 directly bound to the promoter regions and transactivated these mesenchymal genes. This transcriptomic change was associated with an epigenetic and phenotypic switch in ECs, leading to increased proliferation, stress fiber formation, and ECM deposition. Mice with endothelial-specific transgenic overexpression of SREBP2 (EC-SREBP2[N]-Tg mice) that were administered bleomycin to induce PF demonstrated exacerbated vascular remodeling and increased mesenchymal transition in the lung. SREBP2 was also found to be markedly increased in lung specimens from patients with IPF. These results suggest that SREBP2, induced by lung injury, can exacerbate PF in rodent models and in human patients with IPF.

Authors

Marcy Martin, Jiao Zhang, Yifei Miao, Ming He, Jian Kang, Hsi-Yuan Huang, Chih-Hung Chou, Tse-Shun Huang, Hsiao-Chin Hong, Shu-Han Su, Simon S. Wong, Rebecca L. Harper, Lingli Wang, Rakesh Bhattacharjee, Hsien-Da Huang, Zhen Bouman Chen, Atul Malhotra, Marlene Rabinovitch, James S. Hagood, John Y-J. Shyy

×
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 22
  • 23
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts