Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Impaired AMPK control of alveolar epithelial cell metabolism promotes pulmonary fibrosis
Luis R. Rodríguez, … , Darrell N. Kotton, Michael F. Beers
Luis R. Rodríguez, … , Darrell N. Kotton, Michael F. Beers
Published July 1, 2025
Citation Information: JCI Insight. 2025;10(15):e182578. https://doi.org/10.1172/jci.insight.182578.
View: Text | PDF
Research Article Metabolism Pulmonology

Impaired AMPK control of alveolar epithelial cell metabolism promotes pulmonary fibrosis

  • Text
  • PDF
Abstract

Alveolar epithelial type II (AT2) cell dysfunction is implicated in the pathogenesis of familial and sporadic idiopathic pulmonary fibrosis (IPF). We previously demonstrated that expression of an AT2 cell–exclusive disease-associated protein isoform (SP-CI73T) in murine and patient-specific induced pluripotent stem cell–derived (iPSC-derived) AT2 cells leads to a block in late macroautophagy and promotes time-dependent mitochondrial impairments; however, how a metabolically dysfunctional AT2 cell results in fibrosis remains elusive. Here, using murine and human iPSC-derived AT2 cell models expressing SP-CI73T, we characterize the molecular mechanisms governing alterations in AT2 cell metabolism that lead to increased glycolysis, decreased mitochondrial biogenesis, disrupted fatty acid oxidation, accumulation of impaired mitochondria, and diminished AT2 cell progenitor capacity manifesting as reduced AT2 cell self-renewal and accumulation of transitional epithelial cells. We identify deficient AMPK signaling as a critical component of AT2 cell dysfunction and demonstrate that targeting this druggable signaling hub can rescue the aberrant AT2 cell metabolic phenotype and mitigate lung fibrosis in vivo.

Authors

Luis R. Rodríguez, Konstantinos-Dionysios Alysandratos, Jeremy Katzen, Aditi Murthy, Willy Roque Barboza, Yaniv Tomer, Sarah Bui, Rebeca Acín-Pérez, Anton Petcherski, Kasey Minakin, Paige Carson, Swati Iyer, Katrina Chavez, Charlotte H. Cooper, Apoorva Babu, Aaron I. Weiner, Andrew E. Vaughan, Zoltan Arany, Orian S. Shirihai, Darrell N. Kotton, Michael F. Beers

×

Full Text PDF

Download PDF (16.26 MB) | Download high-resolution PDF (41.22 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts