Chronic kidney disease (CKD) causes an accumulation of uremic metabolites that negatively impact skeletal muscle function. Tryptophan-derived uremic metabolites are agonists of the aryl hydrocarbon receptor (AHR) which has been shown to be activated in the blood of CKD patients. This study investigated the role of the AHR in skeletal muscle pathology of CKD. Compared to control participants with normal kidney function, AHR-dependent gene expression (CYP1A1 and CYP1B1) was significantly upregulated in skeletal muscle of patients with CKD (P=0.032) and the magnitude of AHR activation was inversely correlated with mitochondrial respiration (P<0.001). In mice with CKD, muscle mitochondrial oxidative phosphorylation (OXPHOS) was significantly impaired and strongly correlated with both the serum level of tryptophan-derived uremic metabolites and AHR activation. Muscle-specific deletion of the AHR significantly improved mitochondrial OXPHOS in male mice with the greatest uremic toxicity (CKD+probenecid) and abolished the relationship between uremic metabolites and OXPHOS. The uremic metabolite-AHR-mitochondrial axis in skeletal muscle was further confirmed using muscle-specific AHR knockdown in C57BL6J that harbour a high-affinity AHR allele, as well as ectopic viral expression of constitutively active mutant AHR in mice with normal renal function. Notably, OXPHOS changes in AHRmKO mice were only present when mitochondria were fueled by carbohydrates. Further analyses revealed that AHR activation in mice led to significant increases in Pdk4 expression (P<0.05) and phosphorylation of pyruvate dehydrogenase enzyme (P<0.05). These findings establish a uremic metabolite-AHR-Pdk4 axis in skeletal muscle that governs mitochondrial deficits in carbohydrate oxidation during CKD.
Trace Thome, Nicholas A. Vugman, Lauren E. Stone, Keon Wimberly, Salvatore T. Scali, Terence E. Ryan
Kidney tubules use fatty acid oxidation (FAO) to support their high energetic requirements. Carnitine palmitoyltransferase 1A (CPT1A) is the rate-limiting enzyme for FAO, and it is necessary to transport long-chain fatty acids into mitochondria. To define the role of tubular CPT1A in aging and injury, we generated mice with tubule-specific deletion of Cpt1a (Cpt1aCKO mice), and the mice were either aged for 2 years or injured by aristolochic acid or unilateral ureteral obstruction. Surprisingly, Cpt1aCKO mice had no significant differences in kidney function or fibrosis compared with wild-type mice after aging or chronic injury. Primary tubule cells from aged Cpt1aCKO mice had a modest decrease in palmitate oxidation but retained the ability to metabolize long-chain fatty acids. Very-long-chain fatty acids, exclusively oxidized by peroxisomes, were reduced in kidneys lacking tubular CPT1A, consistent with increased peroxisomal activity. Single-nuclear RNA-Seq showed significantly increased expression of peroxisomal FAO enzymes in proximal tubules of mice lacking tubular CPT1A. These data suggest that peroxisomal FAO may compensate in the absence of CPT1A, and future genetic studies are needed to confirm the role of peroxisomal β-oxidation when mitochondrial FAO is impaired.
Safaa Hammoud, Alla Ivanova, Yosuke Osaki, Steven Funk, Haichun Yang, Olga Viquez, Rachel Delgado, Dongliang Lu, Melanie Phillips Mignemi, Jane Tonello, Selene Colon, Louise Lantier, David Wasserman, Benjamin D. Humphreys, Jeffrey Koenitzer, Justin Kern, Mark de Caestecker, Toren Finkel, Agnes Fogo, Nidia Messias, Irfan J. Lodhi, Leslie Gewin
Here, we used digital spatial profiling (DSP) to describe the glomerular transcriptomic signatures that may characterize the complex molecular mechanisms underlying progressive kidney disease in Alport syndrome, focal segmental glomerulosclerosis, and membranous nephropathy. Our results revealed significant transcriptional heterogeneity among diseased glomeruli, and this analysis showed that histologically similar glomeruli manifested different transcriptional profiles. Using glomerular pathology scores to establish an axis of progression, we identified molecular pathways with progressively decreased expression in response to increasing pathology scores, including signal recognition particle–dependent cotranslational protein targeting to membrane and selenocysteine synthesis pathways. We also identified a distinct signature of upregulated and downregulated genes common to all the diseases investigated when compared with nondiseased tissue from nephrectomies. These analyses using DSP at the single-glomerulus level could help to increase insight into the pathophysiology of kidney disease and possibly the identification of biomarkers of disease progression in glomerulopathies.
Geremy Clair, Hasmik Soloyan, Paolo Cravedi, Andrea Angeletti, Fadi Salem, Laith Al-Rabadi, Roger E. De Filippo, Stefano Da Sacco, Kevin V. Lemley, Sargis Sedrakyan, Laura Perin
Sodium-glucose cotransporter 2 (SGLT2) inhibitor, dapagliflozin (Dapa), exhibited nephroprotective effects in patients with chronic kidney disease (CKD). We assessed the efficacy of short-term Dapa administration following acute kidney injury (AKI) in preventing CKD. Male Wistar rats were randomly assigned to Sham surgery, bilateral ischemia for 30 minutes (abbreviated as IR), and IR + Dapa groups. Daily treatment with Dapa was initiated just 24 hours after IR and maintained for only 10 days. Initially, rats were euthanized at this point to study early renal repair. After severe AKI, Dapa promptly restored creatinine clearance (CrCl) and significantly reduced renal vascular resistance compared with the IR group. Furthermore, Dapa effectively reversed the mitochondrial abnormalities, including increased fission, altered mitophagy, metabolic dysfunction, and proapoptotic signaling. To study this earlier, another set of rats was studied just 5 days after AKI. Despite persistent renal dysfunction, our data reveal a degree of mitochondrial protection. Remarkably, a 10-day treatment with Dapa demonstrated effectiveness in preventing CKD transition in an independent cohort monitored for 5 months after AKI. This was evidenced by improvements in proteinuria, CrCl, glomerulosclerosis, and fibrosis. Our findings underscore the potential of Dapa in preventing maladaptive repair following AKI, emphasizing the crucial role of early intervention in mitigating AKI long-term consequences.
Miguel Ángel Martínez-Rojas, Hiram Balcázar, Isaac González-Soria, Jesús Manuel González-Rivera, Mauricio E. Rodríguez-Vergara, Laura A. Velazquez-Villegas, Juan Carlos León-Contreras, Rosalba Pérez-Villalva, Francisco Correa, Florencia Rosetti, Norma A. Bobadilla
HIPK2 is a multifunctional kinase that acts as a key pathogenic mediator of chronic kidney disease and fibrosis. It acts as a central effector of multiple signaling pathways implicated in kidney injury, such as TGF-β/Smad3-mediated extracellular matrix accumulation, NF-κB-mediated inflammation, and p53-mediated apoptosis. Thus, a better understanding of the specific HIPK2 regions necessary for distinct downstream pathway activation is critical for optimal drug development for CKD. Our study now shows that Caspase 6-mediated removal of the C-terminal region of HIPK2 (HIPK2-CT) leads to hyperactive p65 NF-κB transcriptional response in kidney cells. In contrast, the expression of cleaved HIPK2-CT fragment can restrain p65 NF-κB transcriptional activity by cytoplasmic sequestration NF-κB signaling component, p65 NF-κB, and attenuation of IκBα degradation. Therefore, we examined whether HIPK2-CT expression can be exploited to restrain renal inflammation in vivo. The induction of HIPK2-CT overexpression in kidney tubular cells attenuated p65 nuclear translocation, expression of inflammatory cytokines, and macrophage infiltration in the kidney of mice with unilateral ureteral obstruction and lipopolysaccharide-induced acute kidney injury. Collectively, our findings indicate that the C-terminal region of HIPK2 is involved in the regulation of nuclear NF-κB transcriptional activity and that HIPK2-CT or its analogs could be further exploited as potential anti-inflammatory agents to treat kidney disease.
Ye Feng, Zhengzhe Li, Heather Wang, Bi-Cheng Liu, Kyung Lee, John Cijiang He
Lupus nephritis (LN) is a pathologically heterogenous autoimmune disease linked to end-stage kidney disease and mortality. Better therapeutic strategies are needed as only 30%–40% of patients completely respond to treatment. Noninvasive biomarkers of intrarenal inflammation may guide more precise approaches. Because urine collects the byproducts of kidney inflammation, we studied the urine proteomic profiles of 225 patients with LN (573 samples) in the longitudinal Accelerating Medicines Partnership in RA/SLE cohort. Urinary biomarkers of monocyte/neutrophil degranulation (i.e., PR3, S100A8, azurocidin, catalase, cathepsins, MMP8), macrophage activation (i.e., CD163, CD206, galectin-1), wound healing/matrix degradation (i.e., nidogen-1, decorin), and IL-16 characterized the aggressive proliferative LN classes and significantly correlated with histological activity. A decline of these biomarkers after 3 months of treatment predicted the 1-year response more robustly than proteinuria, the standard of care (AUC: CD206 0.91, EGFR 0.9, CD163 0.89, proteinuria 0.8). Candidate biomarkers were validated and provide potentially treatable targets. We propose these biomarkers of intrarenal immunological activity as noninvasive tools to diagnose LN and guide treatment and as surrogate endpoints for clinical trials. These findings provide insights into the processes involved in LN activity. This data set is a public resource to generate and test hypotheses and validate biomarkers.
Andrea Fava, Jill Buyon, Laurence Magder, Jeff Hodgin, Avi Rosenberg, Dawit S. Demeke, Deepak A. Rao, Arnon Arazi, Alessandra Ida Celia, Chaim Putterman, Jennifer H. Anolik, Jennifer Barnas, Maria Dall’Era, David Wofsy, Richard Furie, Diane Kamen, Kenneth Kalunian, Judith A. James, Joel Guthridge, Mohamed G. Atta, Jose Monroy Trujillo, Derek Fine, Robert Clancy, H. Michael Belmont, Peter Izmirly, William Apruzzese, Daniel Goldman, Celine C. Berthier, Paul Hoover, Nir Hacohen, Soumya Raychaudhuri, Anne Davidson, Betty Diamond, the Accelerating Medicines Partnership in RA/SLE network, Michelle Petri
Ischemia-reperfusion injury–induced (IRI-induced) acute kidney injury is accompanied by mononuclear phagocyte (MP) invasion and inflammation. However, systematic analysis of extracellular vesicle–carried (EV-carried) proteins mediating intercellular crosstalk in the IRI microenvironment is still lacking. Multiomics analysis combining single-cell RNA-Seq data of kidney and protein profiling of kidney-EV was used to elucidate the intercellular communication between proximal tubular cells (PTs) and MP. Targeted adhesion and migration of various MPs were caused by the secretion of multiple chemokines as well as integrin β1–rich EV by ischemic-damaged PTs after IRI. These recruited MPs, especially Fn1+ macrophagocyte, amplified the surviving PT’s inflammatory response by secreting the inflammatory factors TNF-α, MCP-1, and thrombospondin 1 (THBS-1), which could interact with integrin β1 to promote more MP adhesion and interact with surviving PT to further promote the secretion of IL-1β. However, GW4869 reduced MP infiltration and maintained a moderate inflammatory level likely by blocking EV secretion. Our findings establish the molecular bases by which chemokines and kidney-EV mediate PT-MP crosstalk in early IRI and provide insights into systematic intercellular communication.
Wenjuan Wang, Xuejing Ren, Xiangmei Chen, Quan Hong, Guangyan Cai
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a monogenic disorder accounting for approximately 5% of patients with renal failure. Yet, therapeutics for the treatment of ADPKD remain limited. ADPKD tissues display abnormalities in the biogenesis of the centrosome, a defect that can cause genome instability, aberrant ciliary signaling, and secretion of pro-inflammatory factors. Cystic cells form excess centrosomes via a process termed centrosome amplification (CA), which causes abnormal multipolar spindle configurations, mitotic catastrophe, and reduced cell viability. However, cells with CA can suppress multipolarity via “centrosome clustering,” a key mechanism by which cells circumvent apoptosis. Here, we demonstrate that inhibiting centrosome clustering can counteract the proliferation of renal cystic cells with high incidences of CA. Using ADPKD human cells and mouse models, we show that preventing centrosome clustering with two inhibitors, CCB02 and PJ34, blocks cyst initiation and growth in vitro and in vivo. Inhibiting centrosome clustering activates a p53-mediated surveillance mechanism leading to apoptosis, reduced cyst expansion, interstitial fibrosis, and improved kidney function. Transcriptional analysis of kidneys from treated mice identified pro-inflammatory signaling pathways implicated in CA-mediated cystogenesis and fibrosis. Our results demonstrate that centrosome clustering is a cyst-selective target for the improvement of renal morphology and function in ADPKD.
Tao Cheng, Aruljothi Mariappan, Ewa Langner, Kyuhwan Shim, Jay Gopalakrishnan, Moe R. Mahjoub
The deposition of anti-podocyte auto-antibodies in the glomerular subepithelial space induces primary membranous nephropathy (MN), the leading cause of nephrotic syndrome worldwide. Taking advantage of the glomerulus-on-a-chip system, we modeled human primary MN induced by anti-PLA2R antibodies. Here we show that exposure of primary human podocytes expressing PLA2R to MN serum results in IgG deposition and complement activation on their surface, leading to loss of the chip permselectivity to albumin. C3a receptor (C3aR) antagonists as well as C3AR gene silencing in podocytes reduced oxidative stress induced by MN serum and prevented albumin leakage. In contrast, inhibition of the formation of the membrane-attack-complex (MAC), previously thought to play a major role in MN pathogenesis, did not affect permselectivity to albumin. In addition, treatment with a C3aR antagonist effectively prevented proteinuria in a mouse model of MN, substantiating the chip findings. In conclusion, using a combination of pathophysiologically relevant in vitro and in vivo models, we established that C3a/C3aR signaling plays a critical role in complement-mediated MN pathogenesis, indicating an alternative therapeutic target for MN.
Qi Zhang, Sofia Bin, Kelly L. Budge, Astgik Petrosyan, Valentina Villani, Paola Aguiari, Coralien H. Vink, Jack Wetzels, Hasmik Soloyan, Gaetano La Manna, Manuel Alfredo Podestà, Paolo Molinari, Sargis Sedrakyan, Kevin V. Lemley, Roger E. De Filippo, Laura Perin, Paolo Cravedi, Stefano Da Sacco
Despite clinical use of immunosuppressive agents, the immunopathogenesis of Minimal Change Disease (MCD) and Focal Segmental Glomerulosclerosis (FSGS) remains unclear. SH3BP2, a scaffold protein, forms an immune signaling complex (signalosome) with seventeen other proteins including PLCγ2 and VAV2. Bioinformatic analysis of human glomerular transcriptome (NEPTUNE cohort) revealed upregulated SH3BP2 in MCD (p=0.001) and FSGS (p<0.001). The SH3BP2-signalosome score and downstream MYD88, TRIF, and NFATc1 were significantly upregulated in MCD and FSGS (p=0.004-0.001). Immune pathway activation scores for Toll-like receptors (p=0.042), Cytokine-Cytokine receptor (p=0.001) and NOD-like receptors (p=0.042) were increased in FSGS. Lower SH3BP2-signalosome score was associated with MCD, higher eGFR and remission. Further work using Sh3bp2KI/KI transgenic mice with a gain-in-function mutation showed ~6 and ~25-fold increase in albuminuria at 4 and 12 weeks, respectively. Decreased serum albumin (p=0.002) and unchanged serum creatinine were observed at 12 weeks. Sh3bp2KI/KI kidney morphology appeared normal except for increased mesangial cellularity and patchy foot process fusion without electron dense deposits. SH3BP2 co-immunoprecipitated with PLCγ2 and VAV2 in human podocytes underscoring the significance of SH3BP2 in immune activation. SH3BP2 and its binding partners likely determine the immune activation pathways resulting in podocyte injury leading to loss of glomerular filtration barrier.
Tarak Srivastava, Robert E. Garola, Jianping Zhou, Varun Chandra Boinpelly, Mohammad H. Rezaiekhaligh, Trupti Joshi, Yuexu Jiang, Diba Ebadi, Siddarth Sharma, Christine Sethna, Vincent S. Staggs, Ram Sharma, Debbie S. Gipson, Wei Hao, Yujie Wang, Laura H. Mariani, Jeffrey B. Hodgin, Robert Rottapel, Teruhito Yoshitaka, Yasuyoshi Ueki, Mukut Sharma
No posts were found with this tag.