The prevalence of chronic kidney diseases (CKD) varies by race due to genetic and environmental factors. The Glu504Lys polymorphism in aldehyde dehydrogenase 2 (ALDH2), commonly observed among East Asians, alters the enzyme's function in detoxifying alcohol-derived aldehydes, impacting kidney function. This study investigated the association between variations in ALDH2 levels within the kidney and the progression of kidney fibrosis. Our clinical data indicates that diminished ALDH2 levels are linked to worse CKD outcomes, with correlations between ALDH2 expression, estimated glomerular filtration rate, urinary levels of acrolein, an aldehyde metabolized by ALDH2, and fibrosis severity. In mouse models of unilateral ureteral obstruction and folic acid nephropathy, reduced ALDH2 levels and elevated acrolein were observed in kidneys, especially in ALDH2 Glu504Lys knock-in mice. Mechanistically, acrolein modifies pyruvate kinase M2, leading to its nuclear translocation and co-activation of HIF-1α, shifting cellular metabolism to glycolysis, disrupting mitochondrial function, contributing to tubular damage and the progression of kidney fibrosis. Enhancing ALDH2 expression through adeno-associated virus vectors reduces acrolein and mitigates fibrosis in both wild-type and Glu504Lys knock-in mice. These findings underscore the potential therapeutic significance of targeting the dynamic interaction between ALDH2 and acrolein in CKD.
Szu-yuan Li, Ming-Tsun Tsai, Yu-Ming Kuo, Hui-Min Yang, Zhen-Jie Tong, Hsiao-Wei Cheng, Chih-Ching Lin, Hsiang-Tsui Wang