Go to The Journal of Clinical Investigation
Insight white on transparent.20160208
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All...
  • Collections
    • Recently published
    • Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

Insight white on transparent small

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Transfers
  • Current issue
  • Past issues
  • By specialty
  • Contact
  • Recently published
  • Technical Advances
  • Clinical Medicine
  • Editorials
  • Top read articles

Metabolism

  • 76 Articles
  • 0 Posts
  • ←
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • →
E2F1 inhibits circulating cholesterol clearance by regulating Pcsk9 expression in the liver
Qiuwen Lai, … , Pierre-Damien Denechaud, Lluis Fajas
Qiuwen Lai, … , Pierre-Damien Denechaud, Lluis Fajas
Published May 18, 2017
Citation Information: JCI Insight. 2017;2(10):e89729. doi:10.1172/jci.insight.89729.
View: Text | PDF

E2F1 inhibits circulating cholesterol clearance by regulating Pcsk9 expression in the liver

  • Text
  • PDF
Abstract

Cholesterol accumulation in the liver is an early event in nonalcoholic fatty liver disease (NAFLD). Here, we demonstrate that E2F1 plays a crucial role in maintaining cellular cholesterol homeostasis by regulating cholesterol uptake via proprotein convertase subtilisin/kexin 9 (PCSK9), an enzyme that promotes low-density lipoprotein receptor (LDLR) degradation upon activation. E2f1–/– mice display reduced total plasma cholesterol levels and increased cholesterol content in the liver. In this study, we show that E2f1 deletion in cellular and mouse models leads to a marked decrease in Pcsk9 expression and an increase in LDLR expression. In addition to the upregulation of LDLR, we report that E2f1–/– hepatocytes exhibit increased LDL uptake. ChIP-Seq and PCSK9 promoter reporter experiments confirmed that E2F1 binds to and transactivates the PCSK9 promoter. Interestingly, E2f1–/– mice fed a high-cholesterol diet (HCD) display a fatty liver phenotype and liver fibrosis, which is reversed by reexpression of PCSK9 in the liver. Collectively, these data indicate that E2F1 regulates cholesterol uptake and that the loss of E2F1 leads to abnormal cholesterol accumulation in the liver and the development of fibrosis in response to an HCD.

Authors

Qiuwen Lai, Albert Giralt, Cédric Le May, Lianjun Zhang, Bertrand Cariou, Pierre-Damien Denechaud, Lluis Fajas

×

Increased de novo ceramide synthesis and accumulation in failing myocardium
Ruiping Ji, … , Ira J. Goldberg, P. Christian Schulze
Ruiping Ji, … , Ira J. Goldberg, P. Christian Schulze
Published May 4, 2017
Citation Information: JCI Insight. 2017;2(9):e82922. doi:10.1172/jci.insight.82922.
View: Text | PDF | Addendum

Increased de novo ceramide synthesis and accumulation in failing myocardium

  • Text
  • PDF
Abstract

Abnormal lipid metabolism may contribute to myocardial injury and remodeling. To determine whether accumulation of very long–chain ceramides occurs in human failing myocardium, we analyzed myocardial tissue and serum from patients with severe heart failure (HF) undergoing placement of left ventricular assist devices and controls. Lipidomic analysis revealed increased total and very long–chain ceramides in myocardium and serum of patients with advanced HF. After unloading, these changes showed partial reversibility. Following myocardial infarction (MI), serine palmitoyl transferase (SPT), the rate-limiting enzyme of the de novo pathway of ceramide synthesis, and ceramides were found increased. Blockade of SPT by the specific inhibitor myriocin reduced ceramide accumulation in ischemic cardiomyopathy and decreased C16, C24:1, and C24 ceramides. SPT inhibition also reduced ventricular remodeling, fibrosis, and macrophage content following MI. Further, genetic deletion of the SPTLC2 gene preserved cardiac function following MI. Finally, in vitro studies revealed that changes in ceramide synthesis are linked to hypoxia and inflammation. In conclusion, cardiac ceramides accumulate in the failing myocardium, and increased levels are detectable in circulation. Inhibition of de novo ceramide synthesis reduces cardiac remodeling. Thus, increased de novo ceramide synthesis contributes to progressive pathologic cardiac remodeling and dysfunction.

Authors

Ruiping Ji, Hirokazu Akashi, Konstantinos Drosatos, Xianghai Liao, Hongfeng Jiang, Peter J. Kennel, Danielle L. Brunjes, Estibaliz Castillero, Xiaokan Zhang, Lily Y. Deng, Shunichi Homma, Isaac J. George, Hiroo Takayama, Yoshifumi Naka, Ira J. Goldberg, P. Christian Schulze

×

Tetrahydrobiopterin activates brown adipose tissue and regulates systemic energy metabolism
Yasuo Oguri, … , Hiroyuki Hasegawa, Nobuya Inagaki
Yasuo Oguri, … , Hiroyuki Hasegawa, Nobuya Inagaki
Published May 4, 2017
Citation Information: JCI Insight. 2017;2(9):e91981. doi:10.1172/jci.insight.91981.
View: Text | PDF

Tetrahydrobiopterin activates brown adipose tissue and regulates systemic energy metabolism

  • Text
  • PDF
Abstract

Brown adipose tissue (BAT) is a central organ that acts to increase energy expenditure; its regulatory factors could be clinically useful in the treatment of obesity. Tetrahydrobiopterin (BH4) is an essential cofactor of tyrosine hydroxylase and nitric oxide synthase (NOS). Although BH4 regulates the known regulatory factors of BAT, such as noradrenaline (NA) and NO, participation of BH4 in BAT function remains unclear. In the present study, we investigate the role of BH4 in the regulation of BAT. Hph-1 mice, a mouse model of BH4 deficiency, exhibit obesity, adiposity, glucose intolerance, insulin resistance, and impaired BAT function. Impaired BAT function was ameliorated together with systemic metabolic disturbances by BAT transplantation from BH4-sufficient mice (control mice) into BH4-deficient mice, strongly suggesting that BH4-induced BAT has a critical role in the regulation of systemic energy metabolism. Both NA derived from the sympathetic nerve and NO derived from endothelial NOS in the blood vessels participate in the regulation of BH4. In addition, a direct effect of BH4 in the stimulation of brown adipocytes via NO is implicated. Taken together, BH4 activates BAT and regulates systemic energy metabolism; this suggests an approach for metabolic disorders, such as obesity and diabetes.

Authors

Yasuo Oguri, Yoshihito Fujita, Abulizi Abudukadier, Akiko Ohashi, Tsuyoshi Goto, Futoshi Furuya, Akio Obara, Toru Fukushima, Naomi Matsuo, Minji Kim, Masaya Hosokawa, Teruo Kawada, Hiroyuki Hasegawa, Nobuya Inagaki

×

Metabolite profiling identifies anandamide as a biomarker of nonalcoholic steatohepatitis
W. Taylor Kimberly, … , Kathleen E. Corey, Robert E. Gerszten
W. Taylor Kimberly, … , Kathleen E. Corey, Robert E. Gerszten
Published May 4, 2017
Citation Information: JCI Insight. 2017;2(9):e92989. doi:10.1172/jci.insight.92989.
View: Text | PDF

Metabolite profiling identifies anandamide as a biomarker of nonalcoholic steatohepatitis

  • Text
  • PDF
Abstract

The discovery of metabolite-phenotype associations may highlight candidate biomarkers and metabolic pathways altered in disease states. We sought to identify novel metabolites associated with obesity and one of its major complications, nonalcoholic fatty liver disease (NAFLD), using a liquid chromatography–tandem mass spectrometry method. In 997 individuals in Framingham Heart Study Generation 3 (FHS Gen 3), we identified an association between anandamide (AEA) and BMI. Further examination revealed that AEA was associated with radiographic hepatic steatosis. In a histologically defined NAFLD cohort, AEA was associated with NAFLD severity, the presence of nonalcoholic steatohepatitis, and fibrosis. These data highlight AEA as a marker linking cardiometabolic disease and NAFLD severity.

Authors

W. Taylor Kimberly, John F. O’Sullivan, Anjali K. Nath, Michelle Keyes, Xu Shi, Martin G. Larson, Qiong Yang, Michelle T. Long, Ramachandran Vasan, Randall T. Peterson, Thomas J. Wang, Kathleen E. Corey, Robert E. Gerszten

×

Obesity-induced hepatic steatosis is mediated by endoplasmic reticulum stress in the subfornical organ of the brain
Julie A. Horwath, … , Robin L. Davisson, Colin N. Young
Julie A. Horwath, … , Robin L. Davisson, Colin N. Young
Published April 20, 2017
Citation Information: JCI Insight. 2017;2(8):e90170. doi:10.1172/jci.insight.90170.
View: Text | PDF

Obesity-induced hepatic steatosis is mediated by endoplasmic reticulum stress in the subfornical organ of the brain

  • Text
  • PDF
Abstract

Nonalcoholic fatty liver disease (NAFLD), characterized by an excess accumulation of hepatic triglycerides, is a growing health epidemic. While ER stress in the liver has been implicated in the development of NAFLD, the role of brain ER stress — which is emerging as a key contributor to a number of chronic diseases including obesity — in NAFLD remains unclear. These studies reveal that chemical induction of ER stress in the brain caused hepatomegaly and hepatic steatosis in mice. Conversely, pharmacological reductions in brain ER stress in diet-induced obese mice rescued NAFLD independent of body weight, food intake, and adiposity. Evaluation of brain regions involved revealed robust activation of ER stress biomarkers and ER ultrastructural abnormalities in the circumventricular subfornical organ (SFO), a nucleus situated outside of the blood-brain-barrier, in response to high-fat diet. Targeted reductions in SFO-ER stress in obese mice via SFO-specific supplementation of the ER chaperone 78-kDa glucose–regulated protein ameliorated hepatomegaly and hepatic steatosis without altering body weight, food intake, adiposity, or obesity-induced hypertension. Overall, these findings indicate a novel role for brain ER stress, notably within the SFO, in the pathogenesis of NAFLD.

Authors

Julie A. Horwath, Chansol Hurr, Scott D. Butler, Mallikarjun Guruju, Martin D. Cassell, Allyn L. Mark, Robin L. Davisson, Colin N. Young

×

β-Klotho deficiency protects against obesity through a crosstalk between liver, microbiota, and brown adipose tissue
Emmanuel Somm, … , Gilbert Greub, Nelly Pitteloud
Emmanuel Somm, … , Gilbert Greub, Nelly Pitteloud
Published April 20, 2017
Citation Information: JCI Insight. 2017;2(8):e91809. doi:10.1172/jci.insight.91809.
View: Text | PDF

β-Klotho deficiency protects against obesity through a crosstalk between liver, microbiota, and brown adipose tissue

  • Text
  • PDF
Abstract

β-Klotho (encoded by Klb) is the obligate coreceptor mediating FGF21 and FGF15/19 signaling. Klb–/– mice are refractory to beneficial action of pharmacological FGF21 treatment including stimulation of glucose utilization and thermogenesis. Here, we investigated the energy homeostasis in Klb–/– mice on high-fat diet in order to better understand the consequences of abrogating both endogenous FGF15/19 and FGF21 signaling during caloric overload. Surprisingly, Klb–/– mice are resistant to diet-induced obesity (DIO) owing to enhanced energy expenditure and BAT activity. Klb–/– mice exhibited not only an increase but also a shift in bile acid (BA) composition featured by activation of the classical (neutral) BA synthesis pathway at the expense of the alternative (acidic) pathway. High hepatic production of cholic acid (CA) results in a large excess of microbiota-derived deoxycholic acid (DCA). DCA is specifically responsible for activating the TGR5 receptor that stimulates BAT thermogenic activity. In fact, combined gene deletion of Klb and Tgr5 or antibiotic treatment abrogating bacterial conversion of CA into DCA both abolish DIO resistance in Klb–/– mice. These results suggested that DIO resistance in Klb–/– mice is caused by high levels of DCA, signaling through the TGR5 receptor. These data also demonstrated that gut microbiota can regulate host thermogenesis via conversion of primary into secondary BA. Pharmacologic or nutritional approaches to selectively modulate BA composition may be a promising target for treating metabolic disorders.

Authors

Emmanuel Somm, Hugues Henry, Stephen J. Bruce, Sébastien Aeby, Marta Rosikiewicz, Gerasimos P. Sykiotis, Mohammed Asrih, François R. Jornayvaz, Pierre Damien Denechaud, Urs Albrecht, Moosa Mohammadi, Andrew Dwyer, James S. Acierno Jr., Kristina Schoonjans, Lluis Fajas, Gilbert Greub, Nelly Pitteloud

×

LipidFinder: A computational workflow for discovery of lipids identifies eicosanoid-phosphoinositides in platelets
Anne O’Connor, … , Stuart M. Allen, Valerie B. O’Donnell
Anne O’Connor, … , Stuart M. Allen, Valerie B. O’Donnell
Published April 6, 2017
Citation Information: JCI Insight. 2017;2(7):e91634. doi:10.1172/jci.insight.91634.
View: Text | PDF

LipidFinder: A computational workflow for discovery of lipids identifies eicosanoid-phosphoinositides in platelets

  • Text
  • PDF
Abstract

Accurate and high-quality curation of lipidomic datasets generated from plasma, cells, or tissues is becoming essential for cell biology investigations and biomarker discovery for personalized medicine. However, a major challenge lies in removing artifacts otherwise mistakenly interpreted as real lipids from large mass spectrometry files (>60 K features), while retaining genuine ions in the dataset. This requires powerful informatics tools; however, available workflows have not been tailored specifically for lipidomics, particularly discovery research. We designed LipidFinder, an open-source Python workflow. An algorithm is included that optimizes analysis based on users’ own data, and outputs are screened against online databases and categorized into LIPID MAPS classes. LipidFinder outperformed three widely used metabolomics packages using data from human platelets. We show a family of three 12-hydroxyeicosatetraenoic acid phosphoinositides (16:0/, 18:1/, 18:0/12-HETE-PI) generated by thrombin-activated platelets, indicating crosstalk between eicosanoid and phosphoinositide pathways in human cells. The software is available on GitHub (https://github.com/cjbrasher/LipidFinder), with full userguides.

Authors

Anne O’Connor, Christopher J. Brasher, David A. Slatter, Sven W. Meckelmann, Jade I. Hawksworth, Stuart M. Allen, Valerie B. O’Donnell

×

Insulin’s direct hepatic effect explains the inhibition of glucose production caused by insulin secretion
Dale S. Edgerton, … , Richard M. O’Brien, Alan D. Cherrington
Dale S. Edgerton, … , Richard M. O’Brien, Alan D. Cherrington
Published March 23, 2017
Citation Information: JCI Insight. 2017;2(6):e91863. doi:10.1172/jci.insight.91863.
View: Text | PDF

Insulin’s direct hepatic effect explains the inhibition of glucose production caused by insulin secretion

  • Text
  • PDF
Abstract

Insulin can inhibit hepatic glucose production (HGP) by acting directly on the liver as well as indirectly through effects on adipose tissue, pancreas, and brain. While insulin’s indirect effects are indisputable, their physiologic role in the suppression of HGP seen in response to increased insulin secretion is not clear. Likewise, the mechanisms by which insulin suppresses lipolysis and pancreatic α cell secretion under physiologic circumstances are also debated. In this study, insulin was infused into the hepatic portal vein to mimic increased insulin secretion, and insulin’s indirect liver effects were blocked either individually or collectively. During physiologic hyperinsulinemia, plasma free fatty acid (FFA) and glucagon levels were clamped at basal values and brain insulin action was blocked, but insulin’s direct effects on the liver were left intact. Insulin was equally effective at suppressing HGP when its indirect effects were absent as when they were present. In addition, the inhibition of lipolysis, as well as glucagon and insulin secretion, did not require CNS insulin action or decreased plasma FFA. This indicates that the rapid suppression of HGP is attributable to insulin’s direct effect on the liver and that its indirect effects are redundant in the context of a physiologic increase in insulin secretion.

Authors

Dale S. Edgerton, Guillaume Kraft, Marta Smith, Ben Farmer, Phillip E. Williams, Katie C. Coate, Richard L. Printz, Richard M. O’Brien, Alan D. Cherrington

×

Liver X receptor α mediates hepatic triglyceride accumulation through upregulation of G0/G1 Switch Gene 2 expression
Bradlee L. Heckmann, … , Rudolf Zechner, Jun Liu
Bradlee L. Heckmann, … , Rudolf Zechner, Jun Liu
Published February 23, 2017
Citation Information: JCI Insight. 2017;2(4):e88735. doi:10.1172/jci.insight.88735.
View: Text | PDF

Liver X receptor α mediates hepatic triglyceride accumulation through upregulation of G0/G1 Switch Gene 2 expression

  • Text
  • PDF
Abstract

Liver X receptors (LXRs) are transcription factors essential for cholesterol homeostasis and lipogenesis. LXRα has been implicated in regulating hepatic triglyceride (TG) accumulation upon both influx of adipose-derived fatty acids (FAs) during fasting and stimulation of de novo FA synthesis by chemical agonism of LXR. However, whether or not a convergent mechanism is employed to drive deposition of FAs from these 2 different sources in TGs is undetermined. Here, we report that the G0/G1 Switch Gene 2 (G0S2), a selective inhibitor of intracellular TG hydrolysis/lipolysis, is a direct target gene of LXRα. Transcriptional activation is conferred by LXRα binding to a direct repeat 4 (DR4) motif in the G0S2 promoter. While LXRα–/– mice exhibited decreased hepatic G0S2 expression, adenoviral expression of G0S2 was sufficient to restore fasting-induced TG storage and glycogen depletion in the liver of these mice. In response to LXR agonist T0901317, G0S2 ablation prevented hepatic steatosis and hypertriglyceridemia without affecting the beneficial effects on HDL. Thus, the LXRα-G0S2 axis plays a distinct role in regulating hepatic TG during both fasting and pharmacological activation of LXR.

Authors

Bradlee L. Heckmann, Xiaodong Zhang, Alicia M. Saarinen, Gabriele Schoiswohl, Erin E. Kershaw, Rudolf Zechner, Jun Liu

×

Switching harmful visceral fat to beneficial energy combustion improves metabolic dysfunctions
Xiaoyan Yang, … , Yun Zhang, Yihai Cao
Xiaoyan Yang, … , Yun Zhang, Yihai Cao
Published February 23, 2017
Citation Information: JCI Insight. 2017;2(4):e89044. doi:10.1172/jci.insight.89044.
View: Text | PDF

Switching harmful visceral fat to beneficial energy combustion improves metabolic dysfunctions

  • Text
  • PDF
Abstract

Visceral fat is considered the genuine and harmful white adipose tissue (WAT) that is associated to development of metabolic disorders, cardiovascular disease, and cancer. Here, we present a new concept to turn the harmful visceral fat into a beneficial energy consumption depot, which is beneficial for improvement of metabolic dysfunctions in obese mice. We show that low temperature–dependent browning of visceral fat caused decreased adipose weight, total body weight, and body mass index, despite increased food intake. In high-fat diet–fed mice, low temperature exposure improved browning of visceral fat, global metabolism via nonshivering thermogenesis, insulin sensitivity, and hepatic steatosis. Genome-wide expression profiling showed upregulation of WAT browning–related genes including Cidea and Dio2. Conversely, Prdm16 was unchanged in healthy mice or was downregulated in obese mice. Surgical removal of visceral fat and genetic knockdown of UCP1 in epididymal fat largely ablated low temperature–increased global thermogenesis and resulted in the death of most mice. Thus, browning of visceral fat may be a compensatory heating mechanism that could provide a novel therapeutic strategy for treating visceral fat–associated obesity and diabetes.

Authors

Xiaoyan Yang, Wenhai Sui, Meng Zhang, Mei Dong, Sharon Lim, Takahiro Seki, Ziheng Guo, Carina Fischer, Huixia Lu, Cheng Zhang, Jianmin Yang, Meng Zhang, Yangang Wang, Caixia Cao, Yanyan Gao, Xingguo Zhao, Meili Sun, Yuping Sun, Rujie Zhuang, Nilesh J. Samani, Yun Zhang, Yihai Cao

×
  • ←
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • →

No posts were found with this tag.

Advertisement
Follow JCI Insight: Facebook logo white Twitter logo v2 Rss icon
Copyright © 2018 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts