Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Metabolic and transcriptional effects of bazedoxifene/conjugated estrogens in a model of obesity-associated breast cancer risk
Erin D. Giles, … , Barry S. Komm, Carol J. Fabian
Erin D. Giles, … , Barry S. Komm, Carol J. Fabian
Published March 6, 2025
Citation Information: JCI Insight. 2025;10(8):e182694. https://doi.org/10.1172/jci.insight.182694.
View: Text | PDF
Research Article Metabolism Oncology Article has an altmetric score of 65

Metabolic and transcriptional effects of bazedoxifene/conjugated estrogens in a model of obesity-associated breast cancer risk

  • Text
  • PDF
Abstract

Many risk-eligible women refuse tamoxifen for primary prevention of breast cancer due to concerns about common side effects such as vasomotor symptoms. Tamoxifen may also induce or worsen insulin resistance and hypertriglyceridemia, especially in women with obesity. The combination of bazedoxifene and conjugated estrogens (BZA/CE) reduces vasomotor symptoms and is currently undergoing evaluation for breast cancer risk reduction. However, the impact of BZA/CE on insulin resistance and metabolic health, particularly in those with excess adiposity, is understudied. Here, we examined the effects of obesity on response to BZA/CE in a rat model of breast cancer risk using older ovary-intact rats. Female Wistar rats received carcinogen to increase mammary cancer risk and were fed a high-fat diet to promote obesity. Lean and obese rats were selected based on adiposity, and then randomized to BZA/CE or vehicle for 8 weeks. BZA/CE reduced adiposity, enriched small (insulin-sensitive) mammary adipocytes, increased the abundance of beneficial metabolic gut microbes (Faecalbaculum rodentium and Odoribacter laneus), and reversed obesity-associated changes in lipids and adipokines. BZA/CE also reversed obesity-induced mammary enrichment of cell proliferation pathways, consistent with risk-reducing effects. Together, these data support the use of BZA/CE to improve metabolic health and reduce breast cancer risk in individuals with obesity.

Authors

Erin D. Giles, Katherine L. Cook, Ramsey M. Jenschke, Karen A. Corleto, Danilo Landrock, Tara N. Mahmood, Katherine E. Sanchez, Alina Levin, Stephen D. Hursting, Bruce F. Kimler, Barry S. Komm, Carol J. Fabian

×

Full Text PDF

Download PDF (1.70 MB) | Download high-resolution PDF (16.92 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts

Picked up by 9 news outlets
Blogged by 1
Posted by 2 X users
Referenced by 3 Bluesky users
1 readers on Mendeley
See more details