Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Immunology

  • 1,065 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 77
  • 78
  • 79
  • …
  • 106
  • 107
  • Next →
New epitopes in ovalbumin provide insights for cancer neoepitopes
Sukrut Hemant Karandikar, … , Alan Jerry Korman, Pramod Kumar Srivastava
Sukrut Hemant Karandikar, … , Alan Jerry Korman, Pramod Kumar Srivastava
Published March 14, 2019
Citation Information: JCI Insight. 2019. https://doi.org/10.1172/jci.insight.127882.
View: Text | PDF

New epitopes in ovalbumin provide insights for cancer neoepitopes

  • Text
  • PDF
Abstract

MHC I-restricted epitopes of chicken ovalbumin (OVA) were originally identified using CD8 T cells as probes. Here, using bioinformatics tools, we identify four additional epitopes in OVA in addition to a cryptic epitope. Each new epitope is presented in vivo, as deduced from the lack of CD8 response to it in OVA-transgenic mice. In addition, CD8 responses to the known and novel epitopes are examined in C57BL/6 mice exposed to the OVA-expressing tumor E.G7 in several ways. No responses to any epitope including SIINFEKL are detected in mice with growing E.G7 or mice immunized with the tumor. Only in E.G7-bearing mice treated with an anti-CTLA4 antibody which depletes tumor-infiltrating regulatory T cells, CD8 responses to SIINFEKL and the novel epitope EKYNLTSVL are detected. Finally, all epitopes fails to treat mice with pre-existing tumors. These observations force an important re-consideration of the common assumptions about the therapeutic value of neoepitopes detected by CD8 responses in tumor-bearing hosts.

Authors

Sukrut Hemant Karandikar, John Sidney, Alessandro Sette, Mark Joseph Selby, Alan Jerry Korman, Pramod Kumar Srivastava

×

Myeloid Folliculin balances mTOR activation to maintain innate immunity homeostasis
Jia Li, … , Edward M. Behrens, Zoltan Arany
Jia Li, … , Edward M. Behrens, Zoltan Arany
Published March 7, 2019
Citation Information: JCI Insight. 2019. https://doi.org/10.1172/jci.insight.126939.
View: Text | PDF

Myeloid Folliculin balances mTOR activation to maintain innate immunity homeostasis

  • Text
  • PDF
Abstract

The mTOR pathway is central to most cells. How mTOR is activated in macrophages and modulates macrophage physiology remain poorly understood. The tumor suppressor Folliculin (FLCN) is a GAP for RagC/D, a regulator of mTOR. We show here that LPS potently suppresses FLCN in macrophages, allowing nuclear translocation of the transcription factor TFE3, leading to lysosome biogenesis, cytokine production, and hypersensitivity to inflammatory signals. Nuclear TFE3 additionally activates a transcriptional RagD positive feedback loop that stimulates FLCN-independent canonical mTOR signaling to S6K and increases cellular proliferation. LPS thus simultaneously suppresses the TFE3 arm and activates the S6K arm of mTOR. In vivo, mice lacking myeloid FLCN reveal chronic macrophage activation, leading to profound histiocytic infiltration and tissue disruption, with hallmarks of human histiocytic syndromes like Erdheim-Chester Disease. Our data thus identify a critical FLCN-mTOR-TFE3 axis in myeloid cells, modulated by LPS, that balances mTOR activation and curbs innate immune responses.

Authors

Jia Li, Shogo Wada, Lehn K. Weaver, Chhanda Biswas, Edward M. Behrens, Zoltan Arany

×

BAFF-driven B cell hyperplasia underlies lung disease in common variable immunodeficiency
Paul J. Maglione, … , Andrea Cerutti, Charlotte Cunningham-Rundles
Paul J. Maglione, … , Andrea Cerutti, Charlotte Cunningham-Rundles
Published March 7, 2019
Citation Information: JCI Insight. 2019;4(5):e122728. https://doi.org/10.1172/jci.insight.122728.
View: Text | PDF

BAFF-driven B cell hyperplasia underlies lung disease in common variable immunodeficiency

  • Text
  • PDF
Abstract

BACKGROUND. Common variable immunodeficiency (CVID) is the most common symptomatic primary immunodeficiency and is frequently complicated by interstitial lung disease (ILD) for which etiology is unknown and therapy inadequate. METHODS. Medical record review implicated B cell dysregulation in CVID ILD progression. This was further studied in blood and lung samples using culture, cytometry, ELISA, and histology. Eleven CVID ILD patients were treated with rituximab and followed for 18 months. RESULTS. Serum IgM increased in conjunction with ILD progression, a finding that reflected the extent of IgM production within B cell follicles in lung parenchyma. Targeting these pulmonary B cell follicles with rituximab ameliorated CVID ILD, but disease recurred in association with IgM elevation. Searching for a stimulus of this pulmonary B cell hyperplasia, we found B cell–activating factor (BAFF) increased in blood and lungs of progressive and post-rituximab CVID ILD patients and detected elevation of BAFF-producing monocytes in progressive ILD. This elevated BAFF interacts with naive B cells, as they are the predominant subset in progressive CVID ILD, expressing BAFF receptor (BAFF-R) within pulmonary B cell follicles and blood to promote Bcl-2 expression. Antiapoptotic Bcl-2 was linked with exclusion of apoptosis from B cell follicles in CVID ILD and increased survival of naive CVID B cells cultured with BAFF. CONCLUSION. CVID ILD is driven by pulmonary B cell hyperplasia that is reflected by serum IgM elevation, ameliorated by rituximab, and bolstered by elevated BAFF-mediated apoptosis resistance via BAFF-R. FUNDING. NIH, Primary Immune Deficiency Treatment Consortium, and Rare Disease Foundation.

Authors

Paul J. Maglione, Gavin Gyimesi, Montserrat Cols, Lin Radigan, Huaibin M. Ko, Tamar Weinberger, Brian H. Lee, Emilie K. Grasset, Adeeb H. Rahman, Andrea Cerutti, Charlotte Cunningham-Rundles

×

Ets1 suppresses atopic dermatitis by suppressing pathogenic T cell responses
Choong-Gu Lee, … , Zee Yong Park, Sin-Hyeog Im
Choong-Gu Lee, … , Zee Yong Park, Sin-Hyeog Im
Published March 7, 2019
Citation Information: JCI Insight. 2019;4(5):e124202. https://doi.org/10.1172/jci.insight.124202.
View: Text | PDF

Ets1 suppresses atopic dermatitis by suppressing pathogenic T cell responses

  • Text
  • PDF
Abstract

Atopic dermatitis (AD) is a complex inflammatory skin disease mediated by immune cells of both adaptive and innate types. Among them, CD4+ Th cells are one of major players of AD pathogenesis. Although the pathogenic role of Th2 cells has been well characterized, Th17/Th22 cells are also implicated in the pathogenesis of AD. However, the molecular mechanisms underlying pathogenic immune responses in AD remain unclear. We sought to investigate how the defect in the AD susceptibility gene, Ets1, is involved in AD pathogenesis in human and mice and its clinical relevance in disease severity by identifying Ets1 target genes and binding partners. Consistent with the decrease in ETS1 levels in severe AD patients and the experimental AD-like skin inflammation model, T cell–specific Ets1-deficient mice (Ets1ΔdLck) developed severe AD-like symptoms with increased pathogenic Th cell responses. A T cell–intrinsic increase of gp130 expression upon Ets1 deficiency promotes the gp130-mediated IL-6 signaling pathway, thereby leading to the development of severe AD-like symptoms. Functional blocking of gp130 by selective inhibitor SC144 ameliorated the disease pathogenesis by reducing pathogenic Th cell responses. Our results reveal a protective role of Ets1 in restricting pathogenic Th cell responses and suggest a potential therapeutic target for AD treatment.

Authors

Choong-Gu Lee, Ho-Keun Kwon, Hyeji Kang, Young Kim, Jong Hee Nam, Young Ho Won, Sunhee Park, Taemook Kim, Keunsoo Kang, Dipayan Rudra, Chang-Duk Jun, Zee Yong Park, Sin-Hyeog Im

×

The E3 ligase Hrd1 stabilizes Tregs by antagonizing inflammatory cytokine–induced ER stress response
Yuanming Xu, … , Sang-Myeong Lee, Deyu Fang
Yuanming Xu, … , Sang-Myeong Lee, Deyu Fang
Published March 7, 2019
Citation Information: JCI Insight. 2019;4(5):e121887. https://doi.org/10.1172/jci.insight.121887.
View: Text | PDF

The E3 ligase Hrd1 stabilizes Tregs by antagonizing inflammatory cytokine–induced ER stress response

  • Text
  • PDF
Abstract

Treg differentiation, maintenance, and function are controlled by the transcription factor FoxP3, which can be destabilized under inflammatory or other pathological conditions. Tregs can be destabilized under inflammatory or other pathological conditions, but the underlying mechanisms are not fully defined. Herein, we show that inflammatory cytokines induce ER stress response, which destabilizes Tregs by suppressing FoxP3 expression, suggesting a critical role of the ER stress response in maintaining Treg stability. Indeed, genetic deletion of Hrd1, an E3 ligase critical in suppressing the ER stress response, leads to elevated expression of ER stress–responsive genes in Treg and largely diminishes Treg suppressive functions under inflammatory condition. Mice with Treg-specific ablation of Hrd1 displayed massive multiorgan lymphocyte infiltration, body weight loss, and the development of severe small intestine inflammation with aging. At the molecular level, the deletion of Hrd1 led to the activation of both the ER stress sensor IRE1α and its downstream MAPK p38. Pharmacological suppression of IRE1α kinase, but not its endoribonuclease activity, diminished the elevated p38 activation and fully rescued the stability of Hrd1-null Tregs. Taken together, our studies reveal ER stress response as a previously unappreciated mechanism underlying Treg instability and that Hrd1 is crucial for maintaining Treg stability and functions through suppressing the IRE1α-mediated ER stress response.

Authors

Yuanming Xu, Johanna Melo-Cardenas, Yana Zhang, Isabella Gau, Juncheng Wei, Elena Montauti, Yusi Zhang, Beixue Gao, Hongjian Jin, Zhaolin Sun, Sang-Myeong Lee, Deyu Fang

×

Single-cell analysis of fate-mapped macrophages reveals heterogeneity, including stem-like properties, during atherosclerosis progression and regression
Jian-Da Lin, … , Edward A. Fisher, P’ng Loke
Jian-Da Lin, … , Edward A. Fisher, P’ng Loke
Published February 21, 2019
Citation Information: JCI Insight. 2019;4(4):e124574. https://doi.org/10.1172/jci.insight.124574.
View: Text | PDF

Single-cell analysis of fate-mapped macrophages reveals heterogeneity, including stem-like properties, during atherosclerosis progression and regression

  • Text
  • PDF
Abstract

Atherosclerosis is a leading cause of death worldwide in industrialized countries. Disease progression and regression are associated with different activation states of macrophages derived from inflammatory monocytes entering the plaques. The features of monocyte-to-macrophage transition and the full spectrum of macrophage activation states during either plaque progression or regression, however, are incompletely established. Here, we use a combination of single-cell RNA sequencing and genetic fate mapping to profile, for the first time to our knowledge, plaque cells derived from CX3CR1+ precursors in mice during both progression and regression of atherosclerosis. The analyses revealed a spectrum of macrophage activation states with greater complexity than the traditional M1 and M2 polarization states, with progression associated with differentiation of CXC3R1+ monocytes into more distinct states than during regression. We also identified an unexpected cluster of proliferating monocytes with a stem cell–like signature, suggesting that monocytes may persist in a proliferating self-renewal state in inflamed tissue, rather than differentiating immediately into macrophages after entering the tissue.

Authors

Jian-Da Lin, Hitoo Nishi, Jordan Poles, Xiang Niu, Caroline Mccauley, Karishma Rahman, Emily J. Brown, Stephen T. Yeung, Nikollaq Vozhilla, Ada Weinstock, Stephen A. Ramsey, Edward A. Fisher, P’ng Loke

×

Single-cell RNA sequencing of lung adenocarcinoma reveals heterogeneity of immune response–related genes
Ke-Yue Ma, … , Zhihua Liu, Ning Jiang
Ke-Yue Ma, … , Zhihua Liu, Ning Jiang
Published February 21, 2019
Citation Information: JCI Insight. 2019;4(4):e121387. https://doi.org/10.1172/jci.insight.121387.
View: Text | PDF

Single-cell RNA sequencing of lung adenocarcinoma reveals heterogeneity of immune response–related genes

  • Text
  • PDF
Abstract

Immunotherapy has emerged as a promising approach to treat cancer. However, partial responses across multiple clinical trials support the significance of characterizing intertumor and intratumor heterogeneity to achieve better clinical results and as potential tools in selecting patients for different types of cancer immunotherapies. Yet, the type of heterogeneity that informs clinical outcome and patient selection has not been fully explored. In particular, the lack of characterization of immune response–related genes in cancer cells hinders the further development of metrics to select and optimize immunotherapy. Therefore, we analyzed single-cell RNA-Seq data from lung adenocarcinoma patients and cell lines to characterize the intratumor heterogeneity of immune response–related genes and demonstrated their potential impact on the efficacy of immunotherapy. We discovered that IFN-γ signaling pathway genes are heterogeneously expressed and coregulated with other genes in single cancer cells, including MHC class II (MHCII) genes. The downregulation of genes in IFN-γ signaling pathways in cell lines corresponds to an acquired resistance phenotype. Moreover, analysis of 2 groups of tumor-restricted antigens, namely neoantigens and cancer testis antigens, revealed heterogeneity in their expression in single cells. These analyses provide a rationale for applying multiantigen combinatorial therapies to prevent tumor escape and establish a basis for future development of prognostic metrics based on intratumor heterogeneity.

Authors

Ke-Yue Ma, Alexandra A. Schonnesen, Amy Brock, Carla Van Den Berg, S. Gail Eckhardt, Zhihua Liu, Ning Jiang

×

Stem cell-derived tissue-associated regulatory T cells suppress the activity of pathogenic cells in autoimmune diabetes
Mohammad Haque, … , Jin-Ming Yang, Jianxun Song
Mohammad Haque, … , Jin-Ming Yang, Jianxun Song
Published February 19, 2019
Citation Information: JCI Insight. 2019. https://doi.org/10.1172/jci.insight.126471.
View: Text | PDF

Stem cell-derived tissue-associated regulatory T cells suppress the activity of pathogenic cells in autoimmune diabetes

  • Text
  • PDF
Abstract

The auto antigen (Ag)-specific regulatory T cells (Tregs) from pluripotent stem cells (PSCs), i.e., PSC-Tregs, have the ability to suppress autoimmunity. PSC-Tregs can be programmed to be tissue-associated and to infiltrate into local inflamed tissues to suppress autoimmune responses after adoptive transfer. Nevertheless, the mechanisms by which the auto Ag-specific PSC-Tregs suppress the autoimmune response remain to be fully elucidated. In this study, we generated the functional auto Ag-specific Tregs from the induced PSC (iPSCs), i.e., iPSC-Tregs, and investigated the underlying mechanisms of autoimmunity suppression by these Tregs in a type 1 diabetes (T1D) murine model. A double transgenic (Tg) mouse model of T1D was established in F1 mice in which the first generation of RIP-mOVA Tg mice that were crossed with OT-I T cell receptor (TCR) Tg mice was challenged with vaccinia viruses expressing OVA (VACV-OVA). We show that adoptive transfer of OVA-specific iPSC-Tregs greatly suppressed autoimmunity in the animal model and prevented the insulin-secreting pancreatic β cells from destruction. Further, we demonstrate that the adoptive transfer significantly reduced the expression of ICAM-1 in the diabetic pancreas and inhibited the migration of pathogenic CD8+ T cells and the production of the pro-inflammatory IFN-γ in the pancreas. These results indicate that the stem cell-derived tissue-associated Tregs can robustly accumulate in the diabetic pancreas, and through down-regulating the expression of ICAM-1 in the local inflamed tissues and inhibiting the production of pro-inflammatory cytokine IFN-γ, suppress the migration and activity of the pathogenic immune cells that cause T1D.

Authors

Mohammad Haque, Fengyang Lei, Xiaofang Xiong, Jugal Kishore Das, Xingcong Ren, Deyu Fang, Shahram Salek-Ardakani, Jin-Ming Yang, Jianxun Song

×

IL-33-mediated IL-13 secretion by ST2+ Treg controls inflammation after lung injury
Quan Liu, … , Timothy R. Billiar, Heth R. Turnquist
Quan Liu, … , Timothy R. Billiar, Heth R. Turnquist
Published February 19, 2019
Citation Information: JCI Insight. 2019. https://doi.org/10.1172/jci.insight.123919.
View: Text | PDF

IL-33-mediated IL-13 secretion by ST2+ Treg controls inflammation after lung injury

  • Text
  • PDF
Abstract

Acute respiratory distress syndrome is an often fatal disease that develops after acute lung injury and trauma. How released tissue damage signals, or alarmins, orchestrate early inflammatory events is poorly understood. Herein we reveal that IL-33, an alarmin sequestered in the lung epithelium, is required to limit inflammation after injury due to an unappreciated capacity to mediate Foxp3+ Treg control of local cytokines and myeloid populations. Specifically, Il33–/– mice are more susceptible to lung damage-associated morbidity and mortality that is typified by augmented levels of the proinflammatory cytokines and Ly6Chi monocytes in the bronchoalveolar lavage fluid. Local delivery of IL-33 at the time of injury is protective, but requires the presence of Treg cells. IL-33 stimulates both mouse and human Treg to secrete IL-13. Using Foxp3Cre x Il4/Il13fl/fl mice, we show that Treg expression of IL-13 is required to prevent mortality after acute lung injury by controlling local levels of G-CSF, IL-6, and MCP-1 and inhibiting accumulation of Ly6Chi monocytes. Our study identifies a new regulatory mechanism involving IL-33 and Treg secretion of IL-13 in response to tissue damage that is instrumental in limiting local inflammatory responses and may shape the myeloid compartment after lung injury.

Authors

Quan Liu, Gaelen K. Dwyer, Yifei Zhao, Huihua Li, Lisa R. Mathews, Anish Bhaswanth Chakka, Uma R. Chandran, Jake A. Demetris, John F. Alcorn, Keven M. Robinson, Luis A. Ortiz, Bruce Pitt, Angus W. Thomson, Ming-Hui Fan, Timothy R. Billiar, Heth R. Turnquist

×

Longitudinally persistent cerebrospinal fluid B-cells can resist treatment in multiple sclerosis
Ariele L. Greenfield, … , Michael R. Wilson, H.-Christian von Büdingen
Ariele L. Greenfield, … , Michael R. Wilson, H.-Christian von Büdingen
Published February 12, 2019
Citation Information: JCI Insight. 2019. https://doi.org/10.1172/jci.insight.126599.
View: Text | PDF

Longitudinally persistent cerebrospinal fluid B-cells can resist treatment in multiple sclerosis

  • Text
  • PDF
Abstract

B-cells are key contributors to chronic autoimmune pathology in multiple sclerosis (MS). Clonally related B-cells exist in the cerebrospinal fluid (CSF), meninges, and central nervous system (CNS) parenchyma of MS patients. We sought to investigate the presence of clonally related B-cells over time by performing immunoglobulin heavy chain variable region repertoire sequencing on B-cells from longitudinally collected blood and CSF samples of MS patients (n=10). All patients were untreated at the time of the initial sampling; the majority (n=7) were treated with immune modulating therapies 1.2 (+/-0.3 SD) years later during the second sampling. We found clonal persistence of B-cells in the CSF of five patients; these B-cells were frequently immunoglobulin (Ig) class-switched and CD27+. We identified specific blood B-cell subsets that appear to provide input into CNS repertoires over time. We demonstrate complex patterns of clonal B-cell persistence in CSF and blood, even in patients on immune modulating therapy. Our findings support the concept that peripheral B-cell activation and CNS-compartmentalized immune mechanisms can in part therapy-resistant.

Authors

Ariele L. Greenfield, Ravi Dandekar, Akshaya Ramesh, Erica L. Eggers, Hao Wu, Sarah Laurent, William Harkin, Natalie S. Pierson, Martin S. Weber, Roland G. Henry, Antje Bischof, Bruce A.C. Cree, Stephen L. Hauser, Michael R. Wilson, H.-Christian von Büdingen

×
  • ← Previous
  • 1
  • 2
  • …
  • 77
  • 78
  • 79
  • …
  • 106
  • 107
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts