Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Skin-restricted commensal colonization accelerates skin graft rejection
Yuk Man Lei, … , Yasmine Belkaid, Maria-Luisa Alegre
Yuk Man Lei, … , Yasmine Belkaid, Maria-Luisa Alegre
Published July 16, 2019
Citation Information: JCI Insight. 2019;4(15):e127569. https://doi.org/10.1172/jci.insight.127569.
View: Text | PDF
Research Article Immunology Transplantation

Skin-restricted commensal colonization accelerates skin graft rejection

  • Text
  • PDF
Abstract

Solid organ transplantation can treat end-stage organ failure, but the half-life of transplanted organs colonized with commensals is much shorter than that of sterile organs. Whether organ colonization plays a role in this shorter half-life is not known. We have previously shown that an intact whole-body microbiota can accelerate the kinetics of solid organ allograft rejection in untreated colonized mice, when compared with germ-free (GF) or with antibiotic-pretreated colonized mice, by enhancing the capacity of antigen-presenting cells (APCs) to activate graft-reactive T cells. However, the contribution of intestinal versus skin microbiota to these effects was unknown. Here, we demonstrate that colonizing the skin of GF mice with a single commensal, Staphylococcus epidermidis, while preventing intestinal colonization with oral vancomycin, was sufficient to accelerate skin graft rejection. Notably, unlike the mechanism by which whole-body microbiota accelerates skin graft rejection, cutaneous S. epidermidis did not enhance the priming of alloreactive T cells in the skin-draining lymph nodes. Rather, cutaneous S. epidermidis augmented the ability of skin APCs to drive the differentiation of alloreactive T cells. This study reveals that the extraintestinal donor microbiota can affect transplant outcome and may contribute to the shorter half-life of colonized organs.

Authors

Yuk Man Lei, Martin Sepulveda, Luqiu Chen, Ying Wang, Isabella Pirozzolo, Betty Theriault, Anita S. Chong, Yasmine Belkaid, Maria-Luisa Alegre

×

Full Text PDF | Download (2.97 MB)


Copyright © 2022 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts