Hepatocellular carcinoma (HCC) is a leading cause of death among cirrhotic patients, for which chemopreventive strategies are lacking. Recently, we developed a simple human cell-based system modeling a clinical prognostic liver signature (PLS) predicting liver disease progression and HCC risk. In a previous study, we applied our cell-based system for drug discovery and identified captopril, an approved angiotensin converting enzyme (ACE) inhibitor, as a candidate compound for HCC chemoprevention. Here, we explored ACE as a therapeutic target for HCC chemoprevention. Captopril reduced liver fibrosis and effectively prevented liver disease progression toward HCC development in a diethylnitrosamine (DEN) rat cirrhosis model and a diet-based rat model for nonalcoholic steatohepatitis–induced (NASH-induced) hepatocarcinogenesis. RNA-Seq analysis of cirrhotic rat liver tissues uncovered that captopril suppressed the expression of pathways mediating fibrogenesis, inflammation, and carcinogenesis, including epidermal growth factor receptor (EGFR) signaling. Mechanistic data in liver disease models uncovered a cross-activation of the EGFR pathway by angiotensin. Corroborating the clinical translatability of the approach, captopril significantly reversed the HCC high-risk status of the PLS in liver tissues of patients with advanced fibrosis. Captopril effectively prevents fibrotic liver disease progression toward HCC development in preclinical models and is a generic and safe candidate drug for HCC chemoprevention.
Emilie Crouchet, Shen Li, Mozhdeh Sojoodi, Simonetta Bandiera, Naoto Fujiwara, Hussein El Saghire, Shijia Zhu, Tongqi Qian, Fahmida Akter Rasha, Fabio Del Zompo, Stephen C. Barrett, Eugénie Schaeffer, Marine A. Oudot, Clara Ponsolles, Sarah C. Durand, Sarani Ghoshal, Gunisha Arora, Fabio Giannone, Raymond T. Chung, Nevena Slovic, Nicolaas Van Renne, Emanuele Felli, Patrick Pessaux, Joachim Lupberger, Nathalie Pochet, Catherine Schuster, Kenneth K. Tanabe, Yujin Hoshida, Bryan C. Fuchs, Thomas F. Baumert
Hepatic de novo lipogenesis is influenced by the branched-chain α-keto acid dehydrogenase (BCKDH) kinase (BCKDK). We aimed to determine whether circulating levels of the immediate substrates of BCKDH, the branched-chain α-ketoacids (BCKAs) and hepatic BCKDK expression are associated with the presence and severity of non-alcoholic fatty liver disease (NAFLD). Eighty metabolites (3 BCKA, 14 amino acids, 43 acylcarnitines, 20 ceramides) were quantified in plasma from 288 bariatric surgery patients with severe obesity (BMI > 35 kg/m2) with scored liver biopsy samples. Metabolite principal component analysis (PCA) factors, BCKA, branched-chain amino acids (BCAA), and the BCKA:BCAA ratio were tested for associations with steatosis grade and presence of non-alcoholic steatohepatitis (NASH). Of all analytes tested, only the valine-derived BCKA, α-ketoisovalerate, and the BCKA:BCAA ratio were associated with both steatosis grade and NASH. Gene expression analysis in liver samples from two independent bariatric surgery cohorts showed that hepatic BCKDK mRNA expression correlates with steatosis, ballooning, and levels of the lipogenic transcription factor SREBP1. Experiments in AML12 hepatocytes showed that SREBP1 inhibition lowers BCKDK mRNA expression. These findings demonstrate that higher plasma levels of BCKA and hepatic expression of BCKDK are features of human NAFLD/NASH and identify SREBP1 as a transcriptional regulator of BCKDK.
Thomas Grenier-Larouche, Lydia Coulter Kwee, Yann Deleye, Paola Leon-Mimila, Jacquelyn M. Walejko, Robert W. McGarrah, Simon Marceau, Sylvain Trahan, Christine Racine, André C. Carpentier, Aldons J. Lusis, Olga Ilkayeva, Marie-Claude Vohl, Adriana Huertas-Vazquez, Andre Tchernof, Svati H. Shah, Christopher B. Newgard, Phillip J. White
Disrupted liver regeneration following hepatectomy represents an “undruggable” clinical challenge associated with poor patient outcomes. Yes-associated protein (YAP), a transcriptional co-activator which is repressed by the Hippo pathway, is instrumental in liver regeneration. We have previously described an alternative, Hippo-independent mechanism of YAP activation mediated by tyrosine-protein phosphatase non-receptor type 11 (SHP2) inhibition. Herein, we examined the effects of YAP activation with a selective SHP1/SHP2 inhibitor, NSC-87877, on liver regeneration in murine partial hepatectomy models. In our studies, NSC-87877 led to accelerated hepatocyte proliferation, improved liver regeneration, and decreased markers of injury following partial hepatectomy. The effects of NSC-87877 were lost in mice with hepatocyte-specific Yap/Taz deletion, which demonstrated dependence on these molecules for the enhanced regenerative response. Furthermore, administration of NSC-87877 to murine models of non-alcoholic steatohepatitis was associated with improved survival and decreased markers of injury post-hepatectomy. Evaluation of transcriptomic changes in the context of NSC-87877 administration revealed reduction in fibrotic signaling and augmentation of cell cycle signaling. Cytoprotective changes included downregulation of Nr4a1, an apoptosis inducer. Collectively, the data suggest that SHP2 inhibition induces a pro-proliferative and cytoprotective enhancement of liver regeneration dependent on YAP.
Ryan D. Watkins, EeeLN H. Buckarma, Jennifer L. Tomlinson, Chantal E. McCabe, Jennifer A. Yonkus, Nathan W. Werneburg, Rachel L. Bayer, Patrick P. Starlinger, Keith D. Robertson, Chen Wang, Gregory J. Gores, Rory L. Smoot
Senescent cells have long been associated with deleterious effects in aging-related pathologies, although recent studies have uncovered their beneficial roles in certain contexts such as wound healing. We have found that hepatic stellate cells (HSCs) undergo senescence within two days after 2/3 partial hepatectomy (PHx) in young (2-3 month-old) mice, and elimination of these senescent cells by the senolytic drug ABT263 or using a genetic mouse model impairs liver regeneration. Senescent HSCs secrete IL-6 and CXCR2 ligands as part of the senescence-associated secretory phenotype (SASP), which induces multiple signaling pathways to stimulate liver regeneration. IL-6 activates STAT3, induces YAP activation through SRC family kinases, and synergizes with CXCL2 to activate ERK1/2 to stimulate hepatocyte proliferation. The administration of either IL-6 or CXCL2 partially restores liver regeneration in mice with senescent cell elimination, and the combination of both fully restores liver weight recovery. Furthermore, the matricellular protein CCN1/CYR61 is rapidly elevated in response to PHx and induces HSC senescence. Knock-in mice expressing a mutant CCN1 unable to bind integrin α6β1 are deficient in senescent cells and liver regeneration after PHx. Thus, HSC senescence, largely induced by CCN1, is a programmed response to PHx and plays a critical role in liver regeneration through signaling pathways activated by IL-6 and ligands of CXCR2.
Naiyuan Cheng, Ki-Hyun Kim, Lester F. Lau
BACKGROUND. NAFLD affects 25-30% of the US and European populations and is associated with insulin resistance (IR), T2D, increased cardiovascular risk and is defined by hepatic triglyceride content (HTG) > 5.56%. However, it is unknown whether HTG content less than 5.56% is associated with cardiometabolic risk factors and whether there are ethnic [Asian Indian (AI) vs. non-Asian Indian (non-AI)] and/or gender differences in these parameters in lean individuals. METHODS. We prospectively recruited 2,331 individuals and measured HTG, using 1H MRS, and plasma concentrations of triglycerides, total cholesterol, LDL cholesterol, HDL cholesterol, and uric acid. Insulin sensitivity was assessed using HOMA-IR and the Matsuda Insulin Sensitivity Index (ISI). RESULTS. The 95th percentile for HTG in lean non-AI individuals was 1.85%. Plasma insulin, triglycerides, total cholesterol, LDL cholesterol and uric acid concentrations were increased and HDL decreased in individuals with HTG content > 1.85% and ≤ 5.56% compared to those individuals with HTG content ≤ 1.85% and was associated with increased IR. Mean HTG was lower in lean non-AI women compared to lean non-AI men, whereas lean AI men and women had a 40-100% increase in HTG when compared to non-AI men and women which was associated with increased cardiometabolic risk factors. CONCLUSIONS. We found that the 95th percentile of HTG in lean non-AI individuals was 1.85% and that HTG concentrations above this threshold were associated with IR and cardiovascular risk factors. Premenopausal women are protected from these changes whereas young lean AI men and women manifest increased HTG content and associated cardiometabolic risk factors. FUNDING. Supported by grants from the United States Department of Health and Human Resources (NIH/NIDDK): R01 DK113984, P30 DK45735, U24 DK59635 and UL1 RR024139 and the Novo Nordisk Foundation (NNF18CC0034900).
Kitt Falk Petersen, Sylvie Dufour, Fangyong Li, Douglas L. Rothman, Gerald I. Shulman
Ammonia is a cytotoxic metabolite with pleiotropic molecular and metabolic effects, including senescence induction. During dysregulated ammonia metabolism, which occurs in chronic diseases, skeletal muscle becomes a major organ for nonhepatocyte ammonia uptake. Muscle ammonia disposal occurs in mitochondria via cataplerosis of critical intermediary metabolite α-ketoglutarate, a senescence-ameliorating molecule. Untargeted and mitochondrially targeted data were analyzed by multiomics approaches. These analyses were validated experimentally to dissect the specific mitochondrial oxidative defects and functional consequences, including senescence. Responses to ammonia lowering in myotubes and in hyperammonemic portacaval anastomosis rat muscle were studied. Whole-cell transcriptomics integrated with whole-cell, mitochondrial, and tissue proteomics showed distinct temporal clusters of responses with enrichment of oxidative dysfunction and senescence-related pathways/proteins during hyperammonemia and after ammonia withdrawal. Functional and metabolic studies showed defects in electron transport chain complexes I, III, and IV; loss of supercomplex assembly; decreased ATP synthesis; increased free radical generation with oxidative modification of proteins/lipids; and senescence-associated molecular phenotype–increased β-galactosidase activity and expression of p16INK, p21, and p53. These perturbations were partially reversed by ammonia lowering. Dysregulated ammonia metabolism caused reversible mitochondrial dysfunction by transcriptional and translational perturbations in multiple pathways with a distinct skeletal muscle senescence-associated molecular phenotype.
Avinash Kumar, Nicole Welch, Saurabh Mishra, Annette Bellar, Rafaella Nasciemento Silva, Ling Li, Shashi Shekhar Singh, Mary Sharkoff, Alexis Kerr, Aruna Kumar Chelluboyina, Jinendiran Sekar, Amy H. Attaway, Charles Hoppel, Belinda Willard, Gangarao Davuluri, Srinivasan Dasarathy
Tristetraprolin (TTP), an important immunosuppressive protein regulating mRNA decay through recognition of the AU-rich elements (AREs) within the 3′-UTRs of mRNAs, participates in the pathogenesis of liver diseases. However, whether TTP regulates mRNA stability through other mechanisms remains poorly understood. Here, we report that TTP was upregulated in acute liver failure (ALF), resulting in decreased mRNA stabilities of CCL2 and CCL5 through promotion of N6-methyladenosine (m6A) mRNA methylation. Overexpression of TTP could markedly ameliorate hepatic injury in vivo. TTP regulated the mRNA stabilization of CCL2 and CCL5. Interestingly, increased m6A methylation in CCL2 and CCL5 mRNAs promoted TTP-mediated RNA destabilization. Moreover, induction of TTP upregulated expression levels of WT1 associated protein, methyltransferase like 14, and YT521-B homology N6-methyladenosine RNA binding protein 2, which encode enzymes regulating m6A methylation, resulting in a global increase of m6A methylation and amelioration of liver injury due to enhanced degradation of CCL2 and CCL5. These findings suggest a potentially novel mechanism by which TTP modulates mRNA stabilities of CCL2 and CCL5 through m6A RNA methylation, which is involved in the pathogenesis of ALF.
Pingping Xiao, Mingxuan Li, Mengsi Zhou, Xuejun Zhao, Cheng Wang, Jinglin Qiu, Qian Fang, Hong Jiang, Huifen Dong, Rui Zhou
Monocarboxylates, such as lactate and pyruvate, are precursors for biosynthetic pathways, including those for glucose, lipids, and amino acids via the tricarboxylic acid (TCA) cycle and adjacent metabolic networks. The transportation of monocarboxylates across the cellular membrane is performed primarily by monocarboxylate transporters (MCTs), the membrane localization and stabilization of which are facilitated by the transmembrane protein basigin (BSG). Here, we demonstrate that the MCT/BSG axis sits at a crucial intersection of cellular metabolism. Abolishment of MCT1 in the plasma membrane was achieved by Bsg depletion, which led to gluconeogenesis impairment via preventing the influx of lactate and pyruvate into the cell, consequently suppressing the TCA cycle. This net anaplerosis suppression was compensated in part by the increased utilization of glycogenic amino acids (e.g., alanine and glutamine) into the TCA cycle and by activated ketogenesis through fatty acid β-oxidation. Complementary to these observations, hyperglycemia and hepatic steatosis induced by a high-fat diet were ameliorated in Bsg-deficient mice. Furthermore, Bsg deficiency significantly improved insulin resistance induced by a high-fat diet. Taken together, the plasma membrane–selective modulation of lactate and pyruvate transport through BSG inhibition could potentiate metabolic flexibility to treat metabolic diseases.
Akihiro Ryuge, Tomoki Kosugi, Kayaho Maeda, Ryoichi Banno, Yang Gou, Kei Zaitsu, Takanori Ito, Yuka Sato, Akiyoshi Hirayama, Shoma Tsubota, Takashi Honda, Kazuki Nakajima, Tomoya Ozaki, Kunio Kondoh, Kazuo Takahashi, Noritoshi Kato, Takuji Ishimoto, Tomoyoshi Soga, Takahiko Nakagawa, Teruhiko Koike, Hiroshi Arima, Yukio Yuzawa, Yasuhiko Minokoshi, Shoichi Maruyama, Kenji Kadomatsu
The signaling mechanisms by which dietary fat and cholesterol signals regulate central pathways of glucose homeostasis are not completely understood. By using a hepatocyte-specific PKCβ-deficient (PKCβHep–/–) mouse model, we demonstrated the role of hepatic PKCβ in slowing disposal of glucose overload by suppressing glycogenesis and increasing hepatic glucose output. PKCβHep–/– mice exhibited lower plasma glucose under the fed condition, modestly improved systemic glucose tolerance and mildly suppressed gluconeogenesis, increased hepatic glycogen accumulation and synthesis due to elevated glucokinase expression and activated glycogen synthase (GS), and suppressed glucose-6-phosphatase expression compared with controls. These events were independent of hepatic AKT/GSK-3α/β signaling and were accompanied by increased HNF-4α transactivation, reduced FoxO1 protein abundance, and elevated expression of GS targeting protein phosphatase 1 regulatory subunit 3C in the PKCβHep–/– liver compared with controls. The above data strongly imply that hepatic PKCβ deficiency causes hypoglycemia postprandially by promoting glucose phosphorylation via upregulating glucokinase and subsequently redirecting more glucose-6-phosphate to glycogen via activating GS. In summary, hepatic PKCβ has a unique and essential ability to induce a coordinated response that negatively affects glycogenesis at multiple levels under physiological postprandial conditions, thereby integrating nutritional fat intake with dysregulation of glucose homeostasis.
Yaoling Shu, Faizule Hassan, Michael C. Ostrowski, Kamal D. Mehta
Xanthine oxidoreductase (XOR) is an enzyme that catalyzes hypoxanthine to xanthine and xanthine to uric acid, respectively. However, the underlying mechanisms of increased plasma XOR and its pathological roles in systemic diseases, such as atherosclerosis, are not fully understood. In this study, we found that changes in plasma XOR activity after bariatric surgery closely associated with those in liver enzymes, but not with those in BMI. In a mouse model of nonalcoholic fatty liver disease/steatohepatitis (NAFLD/NASH), plasma XOR activity markedly increased. Besides, purine catabolism was accelerated in the plasma per se of NASH mice and human patients with high XOR activity. In our NASH mice, we observed an increased vascular neointima formation consisting of dedifferentiated vascular smooth muscle cells (SMCs), which was significantly attenuated by topiroxostat, a selective XOR inhibitor. In vitro, human liver S9–derived XOR promoted proliferation of SMCs with phenotypic modulation and induced ROS production by catabolizing hypoxanthine released from human endothelial cells. Collectively, the results from human and mouse models suggest that increased plasma XOR activity, mainly explained by excess hepatic leakage, was involved in the pathogenesis of vascular injury, especially in NAFLD/NASH conditions.
Yusuke Kawachi, Yuya Fujishima, Hitoshi Nishizawa, Takashi Nakamura, Seigo Akari, Takayo Murase, Takuro Saito, Yasuhiro Miyazaki, Hirofumi Nagao, Shiro Fukuda, Shunbun Kita, Naoto Katakami, Yuichiro Doki, Norikazu Maeda, Iichiro Shimomura
No posts were found with this tag.