Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Deacetylation via SIRT2 prevents keratin-mutation-associated injury and keratin aggregation
Jingyuan Sun, … , Li Liu, M. Bishr Omary
Jingyuan Sun, … , Li Liu, M. Bishr Omary
Published July 24, 2023
Citation Information: JCI Insight. 2023;8(14):e166314. https://doi.org/10.1172/jci.insight.166314.
View: Text | PDF
Research Article Dermatology Hepatology

Deacetylation via SIRT2 prevents keratin-mutation-associated injury and keratin aggregation

  • Text
  • PDF
Abstract

Keratin (K) and other intermediate filament (IF) protein mutations at conserved arginines disrupt keratin filaments into aggregates and cause human epidermolysis bullosa simplex (EBS; K14-R125C) or predispose to mouse liver injury (K18-R90C). The challenge for more than 70 IF-associated diseases is the lack of clinically utilized IF-targeted therapies. We used high-throughput drug screening to identify compounds that normalized mutation-triggered keratin filament disruption. Parthenolide, a plant sesquiterpene lactone, dramatically reversed keratin filament disruption and protected cells and mice expressing K18-R90C from apoptosis. K18-R90C became hyperacetylated compared with K18-WT and treatment with parthenolide normalized K18 acetylation. Parthenolide upregulated the NAD-dependent SIRT2, and increased SIRT2-keratin association. SIRT2 knockdown or pharmacologic inhibition blocked the parthenolide effect, while site-specific Lys-to-Arg mutation of keratin acetylation sites normalized K18-R90C filaments. Treatment of K18-R90C–expressing cells and mice with nicotinamide mononucleotide had a parthenolide-like protective effect. In 2 human K18 variants that associate with human fatal drug-induced liver injury, parthenolide protected K18-D89H– but not K8-K393R–induced filament disruption and cell death. Importantly, parthenolide normalized K14-R125C–mediated filament disruption in keratinocytes and inhibited dispase-triggered keratinocyte sheet fragmentation and Fas-mediated apoptosis. Therefore, keratin acetylation may provide a novel therapeutic target for some keratin-associated diseases.

Authors

Jingyuan Sun, Pei Li, Honglian Gui, Laure Rittié, David B. Lombard, Katrin Rietscher, Thomas M. Magin, Qing Xie, Li Liu, M. Bishr Omary

×

Graphical abstract

Options: View larger image (or click on image)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts