Dominant missense mutations in MYBPC1, the gene encoding the essential sarcomeric slow Myosin Binding Protein-C (sMyBP-C), are associated with Myotrem, a new, early-onset congenital myopathy characterized by muscle weakness, hypotonia, skeletal deformities, and myogenic tremor. Importantly, the clinical manifestation of Myotrem in mid- and late adulthood is unknown. Using the Myotrem MYBPC1 E248K–knock-in (E248K-KI) murine model, we interrogated contractile performance of soleus, gastrocnemius, and tibalis anterior (TA) muscles in both male and female mice in mid- (12 months) and late (24 months) adulthood. Our findings show that the phenotypic manifestation of E248K Myotrem differs across muscle type, sex, and age. While KI soleus muscle consistently exhibited contractile impairment across both sexes and ages, KI gastrocnemius muscle displayed preserved force production. Interestingly, TA muscle showed a sex- and age-specific effect with preserved function through 12 months in both sexes and a sharp decline at 24 months solely in males. Quantitative analysis of TA sarcomeric organization uncovered structural deficits coinciding with contractile dysfunction, supporting the notion that sMyBP-C serves a primarily structural role in skeletal muscle. Collectively, our studies reveal that aging affects the E248K Myotrem myopathy in a muscle- and sex-dependent fashion and show that sarcomeric disorganization accompanies contractile deterioration in affected muscles.
Jennifer M. Mariano, Humberto C. Joca, Jacob Kallenbach, Natasha Ranu, Julien Ochala, Christopher Ward, Aikaterini Kontrogianni-Konstantopoulos
MHC class I polypeptide-related sequence B (MICB) is a ligand for NKG2D. We have shown NK cells are central to lung transplant acute lung injury (ALI) via NKG2D activation, and increased MICB in bronchoalveolar lavage predicts ALI severity. Separately, we found a MICB polymorphism (MICBG406A) is associated with decreased ALI risk. We hypothesized this polymorphism would protect against severe SARS-CoV-2 respiratory disease. We analyzed 1,036 patients hospitalized with SARS-CoV-2 infection from IMPACC. Associations between MICBG406A and outcomes were determined by linear regression or Cox proportional hazards models. We also measured immune profiles of peripheral blood and the upper and lower airway. We identified 560 major allele homozygous patients, and 426 and 50 with 1 or 2 copies of the variant allele, respectively. MICBG406A conferred reduced odds of severe COVID-19. MICBG406A homozygous participants demonstrated 34% reduced cumulative odds for mechanical ventilation or death and 43% reduced risk for mortality. Patients with MICBG406A variant alleles had reduced soluble inflammatory mediators and differential regulation of multiple immune pathways. These findings demonstrate a potentially novel association between increasing MICBG406A variant allele copies and reduced COVID-19 severity, independent of SARS-CoV-2 viral burden and humoral immunity, suggesting the NKG2D-ligand pathway as an intervention target.
Harry Pickering, Narges Alipanah-Lechner, Ernie Chen, Dylan Duchen, Holden T. Maecker, Seunghee Kim-Schulze, Ruth R. Montgomery, Chris Cotsapas, Hanno Steen, Florian Krammer, Charles R. Langelier, Ofer Levy, Lindsey R. Baden, Esther Melamed, Lauren I.R. Ehrlich, Grace A. McComsey, Rafick P. Sekaly, Charles B. Cairns, Elias K. Haddad, Albert C. Shaw, David A. Hafler, David B. Corry, Farrah Kheradmand, Mark A. Atkinson, Scott C. Brakenridge, Nelson I. Agudelo Higuita, Jordan P. Metcalf, Catherine L. Hough, William B. Messer, Bali Pulendran, Kari C. Nadeau, Mark M. Davis, Ana Fernandez Sesma, Viviana Simon, Monica Kraft, Chris Bime, David J. Erle, Joanna Schaenmann, Al Ozonoff, Bjoern Peters, Steven H. Kleinstein, Alison D. Augustine, Joann Diray-Arce, Patrice M. Becker, Nadine Rouphael, Matthew C. Altman, Steve Bosinger, Walter Eckalbar, IMPACC Network, Carolyn S. Calfee, Oscar A. Aguilar, Elaine F. Reed, John R. Greenland, Daniel R. Calabrese
The loss of integrity of the blood retina barrier (BRB) is a key pathological hallmark of vision-threatening complications in diabetic retinopathy (DR). Although DR is considered a microvascular disease, mounting evidence from mouse models and patients show that inflammation is closely connected with microvasculopathy. Inflammatory responses during retinal pathophysiology are often orchestrated by microglia, resident innate immune cells of the retina. However, the precise role of microglia activity during DR pathogenesis remains elusive. Here, we used an anti-PDGFRβ antibody and inducible endothelial cell–specific PDGFB-KO during postnatal development of retinal vasculature to reproduce a key feature of DR pathology in mice. In addition, we applied a minocycline therapy to modulate retinal inflammation. Postnatal depletion of pericytes or loss of PDGFB in retinal vessels altered BRB integrity and triggered secretion of angiogenic and inflammatory factors with concomitant microglia reactivity, which was sustained in retinas of adult mice. Microglia reactivity was accompanied by upregulation of disease-associated genes. Notably, minocycline attenuated the cycle of inflammatory responses in young and mature retinas, thereby preserving retinal vascular and structural integrity in mice. Together, our findings suggest that immunomodulation of microglia-driven inflammatory responses preserves retinal vasculature and maintains BRB integrity in 2 different mouse models of human DR.
Urbanus Muthai Kinuthia, Christoph Moehle, Ralf H. Adams, Thomas Langmann
BACKGROUND Traffic-related air pollution (TRAP) is a risk factor for Alzheimer disease (AD), where unresolved brain inflammation has been linked to deficits in the levels of free lipid mediators that enable the resolution of inflammation. It is unknown whether these deficits are due to reductions in esterified lipid pools, the main source of free bioactive proresolving lipids in the brain, and whether they are related AD pathophysiology.METHODS This unknown was tested by measuring brain esterified lipid mediators and pathogenic markers of AD in TgF344-AD and WT male and female rats exposed to filtered air or TRAP for 14 months; it was also tested in human postmortem prefrontal cortex of individuals with or without AD.RESULTS Significant reductions in proresolving lipid mediators esterified to neutral lipids and/or phospholipids were seen in AD and TRAP-exposed female rats, where levels were associated with inflammation, synaptic loss, and impaired glucose metabolism. Lower esterified proresolving lipid mediator concentrations were associated with older age in prefrontal cortex of humans with AD compared with controls.CONCLUSION Impaired resolution in AD is due to depletion of esterified proresolving lipid pools that supply the brain with free bioactive mediators involved in inflammation resolution. TRAP exposure alters the same esterified resolution pathways, reflecting convergent mechanisms underlying AD.
Ameer Y. Taha, Qing Shen, Yurika Otoki, Nuanyi Liang, Kelley T. Patten, Anthony E. Valenzuela, Christopher D. Wallis, Douglas J. Rowland, Abhijit J. Chaudhari, Keith J. Bein, Anthony S. Wexler, Lee-Way Jin, Brittany N. Dugger, Danielle J. Harvey, Pamela J. Lein
Exposure to Bacillus Calmette-Guérin (BCG) or Canarypox ALVAC/Alum vaccine elicits pro- or antiinflammatory innate responses, respectively. We tested whether prior exposure of macaques to these immunogens protected against SARS-CoV-2 replication in lungs and found more efficient replication control after the pro-inflammatory immunity elicited by BCG. The decreased virus level in lungs was linked to early infiltrates of classical monocytes producing IL-8 with systemic neutrophils, Th2 cells, and Ki67+CD95+CD4+ T cells producing CCR7. At the time of SARS-CoV-2 exposure, BCG-treated animals had higher frequencies of lung infiltrating neutrophils and higher CD14+ cells expressing efferocytosis marker MERTK, responses correlating with decreased SARS-CoV-2 replication in lung. At the same time point, plasma IL-18, TNF-α, TNFSF-10, and VEGFA levels were also higher in the BCG group and correlated with decreased virus replication. Finally, after SARS-CoV-2 exposure, decreased virus replication correlated with neutrophils producing IL-10 and CCR7 preferentially recruited to the lungs of BCG-vaccinated animals. These data point to the importance of the spatiotemporal distribution of functional monocytes and neutrophils in controlling SARS-CoV-2 levels and suggest a central role of monocyte efferocytosis in curbing replication.
Mohammad Arif Rahman, Katherine C. Goldfarbmuren, Sarkis Sarkis, Massimiliano Bissa, Anna Gutowska, Luca Schifanella, Ramona Moles, Melvin N. Doster, Hanne Andersen, Yogita Jethmalani, Leonid Serebryannyy, Timothy Cardozo, Mark G. Lewis, Genoveffa Franchini
Skeletal muscle excitation-contraction (EC) coupling depends on the direct coupling between CaV1.1 on the sarcolemma and ryanodine receptor (RyR1) on the sarcoplasmic reticulum. A key regulator of this process is STAC3, a protein essential for both the functional expression of CaV1.1 and its conformational coupling with RyR1. Mutations in Stac3 cause STAC3 disorder, a congenital myopathy characterized by muscle weakness. STAC3 interacts with CaV1.1 in 2 key regions: the II-III loop and the proximal C-terminus. While the II-III loop has been previously found to be essential for skeletal muscle EC coupling, here we demonstrated that the interaction between STAC3 and the proximal C-terminus is necessary and sufficient for CaV1.1 functional expression and minimal EC coupling. In contrast, the interaction with the II-III loop is not essential for EC coupling, though it plays a facilitating role in enhancing the process. Supporting this finding, we identified a patient with STAC3 disorder carrying a mutation that deletes the domain of STAC3 involved in the II-III loop interaction. Collectively, our results established that STAC3 binding to CaV1.1 C-terminus is essential for its functional expression, whereas STAC3 interaction with the II-III loop serves to enhance the conformational coupling with RyR1.
Wietske E. Tuinte, Enikő Török, Petronel Tuluc, Fabiana Fattori, Adele D’Amico, Marta Campiglio
Preterm white matter injury (PWMI) is a leading cause of cerebral palsy and chronic neurological disabilities in premature infants. It is characterized by defects in oligodendrocyte precursor cell (OPC) differentiation and dysmyelination. Currently, there are no effective therapeutic strategies available in clinical practice. Lipid homeostasis plays a crucial role in myelin development, yet the function of Lipin1 — a key phosphatidic acid phosphatase involved in phospholipid synthesis — remains unclear. In this study, we identified a significant downregulation of Lipin1 in OPCs from PWMI mice, which impaired OPC differentiation and myelin formation. Conversely, Lipin1 overexpression in these mice promoted OPC maturation and enhanced myelin development. We found evidence that N-acetyltransferase 10 (NAT10) acts as a regulator of Lipin1 expression through RNA pull-down and mass spectrometry. NAT10-mediated N4-acetylcytidine (ac4C) modification enhanced Lipin1 mRNA stability and translation, and NAT10 knockdown in OPCs impaired myelination, highlighting its crucial role in Lipin1-mediated myelination. Our study revealed that the downregulation of Lipin1 impaired OPC differentiation and myelination in PWMI, with NAT10-mediated ac4C modification playing a critical role in regulating Lipin1 expression. These findings highlight Lipin1 and NAT10 as promising therapeutic targets for treating myelination defects in PWMI, warranting further investigation into their potential in preterm birth–related neurological disorders.
Xinyu Li, Meng Zhang, Yanan Liu, Chunjie Guo, Yiwei Liu, Lei Han, Zhaowei Feng, Xiue Wei, Ruiqin Yao
Hypertrophic cardiomyopathy (HCM) is a hereditary heart condition characterized by either preserved or reduced ejection fraction without any underlying secondary causes. The primary cause of HCM is sarcomeric gene mutations, which account for only 40%–50% of the total cases. Here, we identified a pathogenic missense variant in tubulin tyrosine ligase (TTL p.G219S) in a patient with HCM. We used clinical, genetics, computational, and protein biochemistry approaches, as well as patient-specific and CRISPR gene-edited induced pluripotent stem cell–derived cardiomyocytes (iPSC-CMs), to demonstrate that the TTL pathogenic variant results in a reduced enzymatic activity and the accumulation of detyrosinated tubulin leading to the disruption of redox signaling, ultimately leading to HCM. Our findings highlight — for the first time to our knowledge — the crucial roles of the TTL variant in cardiac remodeling resulting in disease.
Pratul Kumar Jain, Susobhan Mahanty, Harshil Chittora, Veronique Henriot, Carsten Janke, Minhajuddin Sirajuddin, Perundurai S. Dhandapany
Butyrate, a microbiome-derived short-chain fatty acid with pleiotropic effects on inflammation and metabolism, has been shown to significantly reduce atherosclerotic lesions, rectify routine metabolic parameters such as low-density lipoprotein cholesterol (LDL-C), and reduce systemic inflammation in murine models of atherosclerosis. However, its foul odor, rapid metabolism in the gut and thus low systemic bioavailability limit its therapeutic effectiveness. Our laboratory has engineered an ester-linked L-serine conjugate to butyrate (SerBut) to mask its taste and odor and to coopt amino acid transporters in the gut to increase its systemic bioavailability, as determined by tissue measurements of free butyrate, produced by hydrolysis of SerBut. In an apolipoprotein E–knockout (ApoE)–/– mouse model of atherosclerosis, SerBut reduced systemic LDL-C, proinflammatory cytokines, and circulating neutrophils. SerBut enhanced inhibition of plaque progression and reduced monocyte accumulation in the aorta compared with sodium butyrate. SerBut suppressed liver injury biomarkers alanine transaminase and aspartate aminotransferase and suppressed steatosis in the liver. SerBut overcomes several barriers to the translation of butyrate and shows superior promise in slowing atherosclerosis and liver injury compared with equidosed sodium butyrate.
Taryn N. Beckman, Lisa R. Volpatti, Salvador Norton de Matos, Anna J. Slezak, Joseph W. Reda, Ada Weinstock, Leah Ziolkowski, Alex Turk, Erica Budina, Shijie Cao, Gustavo Borjas, Jung Woo Kwon, Orlando deLeon, Kirsten C. Refvik, Abigail L. Lauterbach, Suzana Gomes, Eugene B. Chang, Jeffrey A. Hubbell
Although obesity is a major risk factor for cancer, it may also improve the response to cancer therapy. Here we investigated the impact of obesity on the efficacy of immune checkpoint inhibitors (ICI). In male mice, obesity promoted tumor growth but enhanced the response to ICI. This was associated with higher expression of immune-related genes within the tumor and enhanced infiltration of tumor-specific CD8+ T cells. Further, obesity in mice was associated with higher estrogen levels and enrichment of estrogen response genes in the tumor, and anti–programmed cell death 1 (anti–PD-1) efficacy was reduced upon administration of the aromatase inhibitor letrozole, which blocks the production of estrogens. Mechanistically, adipocyte-derived estrogens increased antigen presentation by dendritic cells and tumor-specific CD8+ T cell cytotoxicity. Last, overweight and obese men with melanoma responded better to ICI, with high estrogen levels being associated with improved response and survival. Our results suggest that estrogens may serve as a predictive factor of response to ICI in men with melanoma.
Eloïse Dupuychaffray, Hélène Poinot, Aurélie Vuilleumier, Maxime Borgeaud, Montserrat Alvarez, Betül Taskoparan, Olivier Preynat-Seauve, Clarissa D. Voegel, Eliana Marinari, Denis Migliorini, Valérie Dutoit, Carole Bourquin, Aurélien Pommier
No posts were found with this tag.