Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Cell biology

  • 463 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 45
  • 46
  • 47
  • Next →
Analysis of cystic fibrosis–associated P67L CFTR illustrates barriers to personalized therapeutics for orphan diseases
Carleen M. Sabusap, Wei Wang, Carmel M. McNicholas, W. Joon Chung, Lianwu Fu, Hui Wen, Marina Mazur, Kevin L. Kirk, James F. Collawn, Jeong S. Hong, Eric J. Sorscher
Carleen M. Sabusap, Wei Wang, Carmel M. McNicholas, W. Joon Chung, Lianwu Fu, Hui Wen, Marina Mazur, Kevin L. Kirk, James F. Collawn, Jeong S. Hong, Eric J. Sorscher
View: Text | PDF

Analysis of cystic fibrosis–associated P67L CFTR illustrates barriers to personalized therapeutics for orphan diseases

  • Text
  • PDF
Abstract

Emerging knowledge indicates the difficulty in categorizing unusual cystic fibrosis (CF) mutations, with regard to both pathogenic mechanism and theratype. As case in point, we present data concerning P67L mutation of the cystic fibrosis transmembrane conductance regulator (CFTR), a defect carried by a small number of individuals with CF and sometimes attributed to a channel conductance abnormality. Findings from our laboratory and others establish that P67L causes protein misfolding, disrupts maturation, confers gating defects, is thermally stable, and exhibits near normal conductance. These results provide one framework by which rare CF alleles such as P67L can be more comprehensively profiled vis-à-vis molecular pathogenesis. We also demonstrate that emerging CF treatments — ivacaftor and lumacaftor — can mediate pronounced pharmacologic activation of P67L CFTR. Infrequent CF alleles are often improperly characterized, in part, due to the small numbers of patients involved. Moreover, access to new personalized treatments among patients with ultra-orphan genotypes has been limited by difficulty arranging phase III clinical trials, and off-label prescribing has been impaired by high drug cost and difficulty arranging third party reimbursement. Rare CFTR mutations such as P67L are emblematic of the challenges to “precision” medicine, including use of the best available mechanistic knowledge to treat patients with unusual forms of disease.

Authors

Carleen M. Sabusap, Wei Wang, Carmel M. McNicholas, W. Joon Chung, Lianwu Fu, Hui Wen, Marina Mazur, Kevin L. Kirk, James F. Collawn, Jeong S. Hong, Eric J. Sorscher

×

ADAM17 substrate release in proximal tubule drives kidney fibrosis
Eirini Kefaloyianni, Muthu Lakshmi Muthu, Jakob Kaeppler, Xiaoming Sun, Venkata Sabbisetti, Athena Chalaris, Stefan Rose-John, Eitan Wong, Irit Sagi, Sushrut S. Waikar, Helmut Rennke, Benjamin D. Humphreys, Joseph V. Bonventre, Andreas Herrlich
Eirini Kefaloyianni, Muthu Lakshmi Muthu, Jakob Kaeppler, Xiaoming Sun, Venkata Sabbisetti, Athena Chalaris, Stefan Rose-John, Eitan Wong, Irit Sagi, Sushrut S. Waikar, Helmut Rennke, Benjamin D. Humphreys, Joseph V. Bonventre, Andreas Herrlich
View: Text | PDF

ADAM17 substrate release in proximal tubule drives kidney fibrosis

  • Text
  • PDF
Abstract

Kidney fibrosis following kidney injury is an unresolved health problem and causes significant morbidity and mortality worldwide. In a study into its molecular mechanism, we identified essential causative features. Acute or chronic kidney injury causes sustained elevation of a disintegrin and metalloprotease 17 (ADAM17); of its cleavage-activated proligand substrates, in particular of pro-TNFα and the EGFR ligand amphiregulin (pro-AREG); and of the substrates’ receptors. As a consequence, EGFR is persistently activated and triggers the synthesis and release of proinflammatory and profibrotic factors, resulting in macrophage/neutrophil ingress and fibrosis. ADAM17 hypomorphic mice, specific ADAM17 inhibitor–treated WT mice, or mice with inducible KO of ADAM17 in proximal tubule (Slc34a1-Cre) were significantly protected against these effects. In vitro, in proximal tubule cells, we show that AREG has unique profibrotic actions that are potentiated by TNFα-induced AREG cleavage. In vivo, in acute kidney injury (AKI) and chronic kidney disease (CKD, fibrosis) patients, soluble AREG is indeed highly upregulated in human urine, and both ADAM17 and AREG expression show strong positive correlation with fibrosis markers in related kidney biopsies. Our results indicate that targeting of the ADAM17 pathway represents a therapeutic target for human kidney fibrosis.

Authors

Eirini Kefaloyianni, Muthu Lakshmi Muthu, Jakob Kaeppler, Xiaoming Sun, Venkata Sabbisetti, Athena Chalaris, Stefan Rose-John, Eitan Wong, Irit Sagi, Sushrut S. Waikar, Helmut Rennke, Benjamin D. Humphreys, Joseph V. Bonventre, Andreas Herrlich

×

Airway epithelial homeostasis and planar cell polarity signaling depend on multiciliated cell differentiation
Eszter K. Vladar, Jayakar V. Nayak, Carlos E. Milla, Jeffrey D. Axelrod
Eszter K. Vladar, Jayakar V. Nayak, Carlos E. Milla, Jeffrey D. Axelrod
View: Text | PDF

Airway epithelial homeostasis and planar cell polarity signaling depend on multiciliated cell differentiation

  • Text
  • PDF
Abstract

Motile airway cilia that propel contaminants out of the lung are oriented in a common direction by planar cell polarity (PCP) signaling, which localizes PCP protein complexes to opposite cell sides throughout the epithelium to orient cytoskeletal remodeling. In airway epithelia, PCP is determined in a 2-phase process. First, cell-cell communication via PCP complexes polarizes all cells with respect to the proximal-distal tissue axis. Second, during ciliogenesis, multiciliated cells (MCCs) undergo cytoskeletal remodeling to orient their cilia in the proximal direction. The second phase not only directs cilium polarization, but also consolidates polarization across the epithelium. Here, we demonstrate that in airway epithelia, PCP depends on MCC differentiation. PCP mutant epithelia have misaligned cilia, and also display defective barrier function and regeneration, indicating that PCP regulates multiple aspects of airway epithelial homeostasis. In humans, MCCs are often sparse in chronic inflammatory diseases, and these airways exhibit PCP dysfunction. The presence of insufficient MCCs impairs mucociliary clearance in part by disrupting PCP-driven polarization of the epithelium. Consistent with defective PCP, barrier function and regeneration are also disrupted. Pharmacological stimulation of MCC differentiation restores PCP and reverses these defects, suggesting its potential for broad therapeutic benefit in chronic inflammatory disease.

Authors

Eszter K. Vladar, Jayakar V. Nayak, Carlos E. Milla, Jeffrey D. Axelrod

×

Elimination of p19ARF-expressing cells enhances pulmonary function in mice
Michihiro Hashimoto, Azusa Asai, Hiroyuki Kawagishi, Ryuta Mikawa, Yuji Iwashita, Kazuki Kanayama, Kazushi Sugimoto, Tadashi Sato, Mitsuo Maruyama, Masataka Sugimoto
Michihiro Hashimoto, Azusa Asai, Hiroyuki Kawagishi, Ryuta Mikawa, Yuji Iwashita, Kazuki Kanayama, Kazushi Sugimoto, Tadashi Sato, Mitsuo Maruyama, Masataka Sugimoto
View: Text | PDF

Elimination of p19ARF-expressing cells enhances pulmonary function in mice

  • Text
  • PDF
Abstract

Senescent cells accumulate in many tissues as animals age and are considered to underlie several aging-associated pathologies. The tumor suppressors p19ARF and p16INK4a, both of which are encoded in the CDKN2A locus, play critical roles in inducing and maintaining permanent cell cycle arrest during cellular senescence. Although the elimination of p16INK4a-expressing cells extends the life span of the mouse, it is unclear whether tissue function is restored by the elimination of senescent cells in aged animals and whether and how p19ARF contributes to tissue aging. The aging-associated decline in lung function is characterized by an increase in compliance as well as pathogenic susceptibility to pulmonary diseases. We herein demonstrated that pulmonary function in 12-month-old mice was reversibly restored by the elimination of p19ARF-expressing cells. The ablation of p19ARF-expressing cells using a toxin receptor-mediated cell knockout system ameliorated aging-associated lung hypofunction. Furthermore, the aging-associated gene expression profile was reversed after the elimination of p19ARF. Our results indicate that the aging-associated decline in lung function was, at least partly, attributed to p19ARF and was recovered by eliminating p19ARF-expressing cells.

Authors

Michihiro Hashimoto, Azusa Asai, Hiroyuki Kawagishi, Ryuta Mikawa, Yuji Iwashita, Kazuki Kanayama, Kazushi Sugimoto, Tadashi Sato, Mitsuo Maruyama, Masataka Sugimoto

×

Decreases in thymopoiesis of astronauts returning from space flight
Cara L. Benjamin, Raymond P. Stowe, Lisa St. John, Clarence F. Sams, Satish K. Mehta, Brian E. Crucian, Duane L. Pierson, Krishna V. Komanduri
Cara L. Benjamin, Raymond P. Stowe, Lisa St. John, Clarence F. Sams, Satish K. Mehta, Brian E. Crucian, Duane L. Pierson, Krishna V. Komanduri
View: Text | PDF

Decreases in thymopoiesis of astronauts returning from space flight

  • Text
  • PDF
Abstract

Following the advent of molecular assays that measure T cell receptor excision circles (TRECs) present in recent thymic emigrants, it has been conclusively shown that thymopoiesis persists in most adults, but that functional output decreases with age, influencing the maintenance of a diverse and functional T cell receptor (TCR) repertoire. Space flight has been shown to result in a variety of phenotypic and functional changes in human T cells and in the reactivation of latent viruses. While space flight has been shown to influence thymic architecture in rodents, thymopoiesis has not previously been assessed in astronauts. Here, we assessed thymopoiesis longitudinally over a 1-year period prior to and after long-term space flight (median duration, 184 days) in 16 astronauts. While preflight assessments of thymopoiesis remained quite stable in individual astronauts, we detected significant suppression of thymopoiesis in all subjects upon return from space flight. We also found significant increases in urine and plasma levels of endogenous glucocorticoids coincident with the suppression of thymopoiesis. The glucocorticoid induction and thymopoiesis suppression were transient, and they normalized shortly after return to Earth. This is the first report to our knowledge to prospectively demonstrate a significant change in thymopoiesis in healthy individuals in association with a defined physiologic emotional and physical stress event. These results suggest that suppression of thymopoiesis has the potential to influence the maintenance of the TCR repertoire during extended space travel. Further studies of thymopoiesis and endogenous glucocorticoids in other stress states, including illness, are warranted.

Authors

Cara L. Benjamin, Raymond P. Stowe, Lisa St. John, Clarence F. Sams, Satish K. Mehta, Brian E. Crucian, Duane L. Pierson, Krishna V. Komanduri

×

Identification of microRNA-181a-5p and microRNA-4454 as mediators of facet cartilage degeneration
Akihiro Nakamura, Y. Raja Rampersaud, Anirudh Sharma, Stephen J. Lewis, Brian Wu, Poulami Datta, Kala Sundararajan, Helal Endisha, Evgeny Rossomacha, Jason S. Rockel, Igor Jurisica, Mohit Kapoor
Akihiro Nakamura, Y. Raja Rampersaud, Anirudh Sharma, Stephen J. Lewis, Brian Wu, Poulami Datta, Kala Sundararajan, Helal Endisha, Evgeny Rossomacha, Jason S. Rockel, Igor Jurisica, Mohit Kapoor
View: Text | PDF

Identification of microRNA-181a-5p and microRNA-4454 as mediators of facet cartilage degeneration

  • Text
  • PDF
Abstract

Osteoarthritis (OA) of spine (facet joints [FJs]) is one of the major causes of severe low back pain and disability worldwide. The degeneration of facet cartilage is a hallmark of FJ OA. However, endogenous mechanisms that initiate degeneration of facet cartilage are unknown, and there are no disease-modifying therapies to stop FJ OA. In this study, we have identified microRNAs (small noncoding RNAs) as mediators of FJ cartilage degeneration. We first established a cohort of patients with varying degrees of facet cartilage degeneration (control group: normal or mild facet cartilage degeneration; FJ OA group: moderate to severe facet cartilage degeneration) and then screened 2,100 miRNAs and identified 2 miRNAs (miR-181a-5p and miR-4454) that were significantly elevated in FJ OA cartilage compared with control facet cartilage. We further explored their role, function, and signaling mechanisms using computational, in vitro functional, and in vivo studies. We specifically indicate that miR-181a-5p and miR-4454 are involved in promoting inflammatory, catabolic, and cell death activity in FJ chondrocytes. This is the first report to our knowledge that identifies miR-181a-5p and miR-4454 as mediators of cartilage degeneration in FJs and potential therapeutic targets for stopping cartilage degeneration.

Authors

Akihiro Nakamura, Y. Raja Rampersaud, Anirudh Sharma, Stephen J. Lewis, Brian Wu, Poulami Datta, Kala Sundararajan, Helal Endisha, Evgeny Rossomacha, Jason S. Rockel, Igor Jurisica, Mohit Kapoor

×

Mutant p53 regulates ovarian cancer transformed phenotypes through autocrine matrix deposition
Marcin P. Iwanicki, Hsing-Yu Chen, Claudia Iavarone, Ioannis K. Zervantonakis, Taru Muranen, Marián Novak, Tan A. Ince, Ronny Drapkin, Joan S. Brugge
Marcin P. Iwanicki, Hsing-Yu Chen, Claudia Iavarone, Ioannis K. Zervantonakis, Taru Muranen, Marián Novak, Tan A. Ince, Ronny Drapkin, Joan S. Brugge
View: Text | PDF

Mutant p53 regulates ovarian cancer transformed phenotypes through autocrine matrix deposition

  • Text
  • PDF
Abstract

High-grade serous ovarian carcinoma (HGS-OvCa) harbors p53 mutations and can originate from the epithelial cell compartment of the fallopian tube fimbriae. From this site, neoplastic cells detach, survive in the peritoneal cavity, and form cellular clusters that intercalate into the mesothelium to form ovarian and peritoneal masses. To examine the contribution of mutant p53 to phenotypic alterations associated with HGS-OvCA, we developed live-cell microscopy assays that recapitulate these early events in cultured fallopian tube nonciliated epithelial (FNE) cells. Expression of stabilizing mutant variants of p53, but not depletion of endogenous wild-type p53, in FNE cells promoted survival and cell-cell aggregation under conditions of cell detachment, leading to the formation of cell clusters with mesothelium-intercalation capacity. Mutant p53R175H-induced phenotypes were dependent on fibronectin production, α5β1 fibronectin receptor engagement, and TWIST1 expression. These results indicate that FNE cells expressing stabilizing p53 mutants acquire anchorage independence and subsequent mesothelial intercalation capacity through a mechanism involving mesenchymal transition and matrix production. These findings provide important new insights into activities of mutant p53 in the cells of origin of HGS-OvCa.

Authors

Marcin P. Iwanicki, Hsing-Yu Chen, Claudia Iavarone, Ioannis K. Zervantonakis, Taru Muranen, Marián Novak, Tan A. Ince, Ronny Drapkin, Joan S. Brugge

×

Fibulin-1 regulates the pathogenesis of tissue remodeling in respiratory diseases
Gang Liu, Marion A. Cooley, Andrew G. Jarnicki, Alan C-Y. Hsu, Prema M. Nair, Tatt Jhong Haw, Michael Fricker, Shaan L. Gellatly, Richard Y. Kim, Mark D. Inman, Gavin Tjin, Peter A.B. Wark, Marjorie M. Walker, Jay C. Horvat, Brian G. Oliver, W. Scott Argraves, Darryl A. Knight, Janette K. Burgess, Philip M. Hansbro
Gang Liu, Marion A. Cooley, Andrew G. Jarnicki, Alan C-Y. Hsu, Prema M. Nair, Tatt Jhong Haw, Michael Fricker, Shaan L. Gellatly, Richard Y. Kim, Mark D. Inman, Gavin Tjin, Peter A.B. Wark, Marjorie M. Walker, Jay C. Horvat, Brian G. Oliver, W. Scott Argraves, Darryl A. Knight, Janette K. Burgess, Philip M. Hansbro
View: Text | PDF

Fibulin-1 regulates the pathogenesis of tissue remodeling in respiratory diseases

  • Text
  • PDF
Abstract

Airway and/or lung remodeling, involving exaggerated extracellular matrix (ECM) protein deposition, is a critical feature common to pulmonary diseases including chronic obstructive pulmonary disease (COPD), asthma, and idiopathic pulmonary fibrosis (IPF). Fibulin-1 (Fbln1), an important ECM protein involved in matrix organization, may be involved in the pathogenesis of these diseases. We found that Fbln1 was increased in COPD patients and in cigarette smoke–induced (CS-induced) experimental COPD in mice. Genetic or therapeutic inhibition of Fbln1c protected against CS-induced airway fibrosis and emphysema-like alveolar enlargement. In experimental COPD, this occurred through disrupted collagen organization and interactions with fibronectin, periostin, and tenascin-c. Genetic inhibition of Fbln1c also reduced levels of pulmonary inflammatory cells and proinflammatory cytokines/chemokines (TNF-α, IL-33, and CXCL1) in experimental COPD. Fbln1c–/– mice also had reduced airway remodeling in experimental chronic asthma and pulmonary fibrosis. Our data show that Fbln1c may be a therapeutic target in chronic respiratory diseases.

Authors

Gang Liu, Marion A. Cooley, Andrew G. Jarnicki, Alan C-Y. Hsu, Prema M. Nair, Tatt Jhong Haw, Michael Fricker, Shaan L. Gellatly, Richard Y. Kim, Mark D. Inman, Gavin Tjin, Peter A.B. Wark, Marjorie M. Walker, Jay C. Horvat, Brian G. Oliver, W. Scott Argraves, Darryl A. Knight, Janette K. Burgess, Philip M. Hansbro

×

Quantitation of circulating satellite RNAs in pancreatic cancer patients
Takahiro Kishikawa, Motoyuki Otsuka, Takeshi Yoshikawa, Motoko Ohno, Keisuke Yamamoto, Natsuyo Yamamoto, Ai Kotani, Kazuhiko Koike
Takahiro Kishikawa, Motoyuki Otsuka, Takeshi Yoshikawa, Motoko Ohno, Keisuke Yamamoto, Natsuyo Yamamoto, Ai Kotani, Kazuhiko Koike
View: Text | PDF

Quantitation of circulating satellite RNAs in pancreatic cancer patients

  • Text
  • PDF
Abstract

Pancreatic ductal adenocarcinoma (Pdac) is a malignancy with a poor prognosis due to difficulties in early detection. Although promising biomarkers are increasingly reported, such methods are not yet easy to apply clinically, mainly due to their low reproducibility or technical difficulties. In this study, we developed a convenient and sensitive method for quantifying aberrantly expressed satellite repeat RNAs in sera, which can be used to efficiently detect patients with Pdac. Here, we introduce a Tandem Repeat Amplification by nuclease Protection (TRAP) method combined with droplet digital PCR (ddPCR) to detect human satellite II (HSATII) RNAs, which are specifically expressed in human Pdacs at greater levels than normal tissues but are difficult to measure due to their repetitive sequences and irregularities. HSATII RNA core sequence levels in sera were significantly higher in Pdac patients compared with noncancer patients (median copy number: 14.75 and 3.17 per μl in the training set and 17.35 and 2.9 in the validation set, respectively). In addition, patients with intraductal papillary mucinous neoplasm (IPMN), a precancerous lesion of Pdac, could also be efficiently detected. This method can be routinely applied to screen patients with Pdac and high-risk patients, facilitating the development of preventive medicine for this disease.

Authors

Takahiro Kishikawa, Motoyuki Otsuka, Takeshi Yoshikawa, Motoko Ohno, Keisuke Yamamoto, Natsuyo Yamamoto, Ai Kotani, Kazuhiko Koike

×

Mst1-mediated phosphorylation of Bcl-xL is required for myocardial reperfusion injury
Michinari Nakamura, Peiyong Zhai, Dominic P. Del Re, Yasuhiro Maejima, Junichi Sadoshima
Michinari Nakamura, Peiyong Zhai, Dominic P. Del Re, Yasuhiro Maejima, Junichi Sadoshima
View: Text | PDF

Mst1-mediated phosphorylation of Bcl-xL is required for myocardial reperfusion injury

  • Text
  • PDF
Abstract

Mst1 is a central Ser-Thr kinase in the Hippo pathway, which promotes apoptosis and inhibits cell proliferation. We have shown previously that, in cardiomyocytes, oxidative stress activates Mst1 at mitochondria, where Mst1 phosphorylates Bcl-xL at Ser14, inducing dissociation of Bcl-xL from Bax and thereby promoting apoptosis. However, the functional significance of Ser14 phosphorylation of endogenous Bcl-xL in vivo remains elusive. We generated knockin (KI) mice in which Ser14 of Bcl-xL is replaced with Ala. KI mice were born at the expected Mendelian ratio, and adult KI mice exhibited normal cardiac morphology and function at baseline. However, KI mice were protected from myocardial ischemia/reperfusion (I/R) injury and exhibited reduced cardiomyocyte apoptosis. Although suppression of endogenous Mst1 also reduced I/R injury, there was no additive protective effect when Mst1 was inhibited in KI mice. The development of dilated cardiomyopathy induced by cardiac-specific overexpression of Mst1 was also ameliorated in KI mice. Lats2 and YAP, two other key components of the Hippo pathway, were not affected in KI mice. These results suggest that Ser14 phosphorylation of Bcl-xL plays an essential role in mediating both cardiomyocyte apoptosis and myocardial injury by acting as a key downstream mediator of Mst1 independently of the canonical Hippo pathway.

Authors

Michinari Nakamura, Peiyong Zhai, Dominic P. Del Re, Yasuhiro Maejima, Junichi Sadoshima

×
  • ← Previous
  • 1
  • 2
  • …
  • 45
  • 46
  • 47
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts