Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

  • 344 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 32
  • 33
  • 34
  • 35
  • Next →
Mitophagy and mitochondrial biogenesis in atrial tissue of patients undergoing heart surgery with cardiopulmonary bypass
Allen M. Andres, Kyle C. Tucker, Amandine Thomas, David J.R. Taylor, David Sengstock, Salik M. Jahania, Reza Dabir, Somayeh Pourpirali, Jamelle A. Brown, David G. Westbrook, Scott W. Ballinger, Robert M. Mentzer Jr., Roberta A. Gottlieb
Allen M. Andres, Kyle C. Tucker, Amandine Thomas, David J.R. Taylor, David Sengstock, Salik M. Jahania, Reza Dabir, Somayeh Pourpirali, Jamelle A. Brown, David G. Westbrook, Scott W. Ballinger, Robert M. Mentzer Jr., Roberta A. Gottlieb
View: Text | PDF

Mitophagy and mitochondrial biogenesis in atrial tissue of patients undergoing heart surgery with cardiopulmonary bypass

  • Text
  • PDF
Abstract

Mitophagy occurs during ischemia/reperfusion (I/R) and limits oxidative stress and injury. Mitochondrial turnover was assessed in patients undergoing cardiac surgery involving cardiopulmonary bypass (CPB). Paired biopsies of right atrial appendage before initiation and after weaning from CPB were processed for protein analysis, mitochondrial DNA/nuclear DNA ratio (mtDNA:nucDNA ratio), mtDNA damage, mRNA, and polysome profiling. Mitophagy in the post-CPB samples was evidenced by decreased levels of mitophagy adapters NDP52 and optineurin in whole tissue lysate, decreased Opa1 long form, and translocation of Parkin to the mitochondrial fraction. PCR analysis of mtDNA comparing amplification of short vs. long segments of mtDNA revealed increased damage following cardiac surgery. Surprisingly, a marked increase in several mitochondria-specific protein markers and mtDNA:nucDNA ratio was observed, consistent with increased mitochondrial biogenesis. mRNA analysis suggested that mitochondrial biogenesis was traniscription independent and likely driven by increased translation of existing mRNAs. These findings demonstrate in humans that both mitophagy and mitochondrial biogenesis occur during cardiac surgery involving CPB. We suggest that mitophagy is balanced by mitochondrial biogenesis during I/R stress experienced during surgery. Mitigating mtDNA damage and elucidating mechanisms regulating mitochondrial turnover will lead to interventions to improve outcome after I/R in the setting of heart disease.

Authors

Allen M. Andres, Kyle C. Tucker, Amandine Thomas, David J.R. Taylor, David Sengstock, Salik M. Jahania, Reza Dabir, Somayeh Pourpirali, Jamelle A. Brown, David G. Westbrook, Scott W. Ballinger, Robert M. Mentzer Jr., Roberta A. Gottlieb

×

Ganglionic GFAP+ glial Gq-GPCR signaling enhances heart functions in vivo
Alison Xiaoqiao Xie, Jakovin J. Lee, Ken D. McCarthy
Alison Xiaoqiao Xie, Jakovin J. Lee, Ken D. McCarthy
View: Text | PDF

Ganglionic GFAP+ glial Gq-GPCR signaling enhances heart functions in vivo

  • Text
  • PDF
Abstract

The sympathetic nervous system (SNS) accelerates heart rate, increases cardiac contractility, and constricts resistance vessels. The activity of SNS efferent nerves is generated by a complex neural network containing neurons and glia. Gq G protein–coupled receptor (Gq-GPCR) signaling in glial fibrillary acidic protein–expressing (GFAP+) glia in the central nervous system supports neuronal function and regulates neuronal activity. It is unclear how Gq-GPCR signaling in GFAP+ glia affects the activity of sympathetic neurons or contributes to SNS-regulated cardiovascular functions. In this study, we investigated whether Gq-GPCR activation in GFAP+ glia modulates the regulatory effect of the SNS on the heart; transgenic mice expressing Gq-coupled DREADD (designer receptors exclusively activated by designer drugs) (hM3Dq) selectively in GFAP+ glia were used to address this question in vivo. We found that acute Gq-GPCR activation in peripheral GFAP+ glia significantly accelerated heart rate and increased left ventricle contraction. Pharmacological experiments suggest that the glial-induced cardiac changes were due to Gq-GPCR activation in satellite glial cells within the sympathetic ganglion; this activation led to increased norepinephrine (NE) release and beta-1 adrenergic receptor activation within the heart. Chronic glial Gq-GPCR activation led to hypotension in female Gfap-hM3Dq mice. This study provides direct evidence that Gq-GPCR activation in peripheral GFAP+ glia regulates cardiovascular functions in vivo.

Authors

Alison Xiaoqiao Xie, Jakovin J. Lee, Ken D. McCarthy

×

Myocardial microRNAs associated with reverse remodeling in human heart failure
Carmen C. Sucharov, David P. Kao, J. David Port, Anis Karimpour-Fard, Robert A. Quaife, Wayne Minobe, Karin Nunley, Brian D. Lowes, Edward M. Gilbert, Michael R. Bristow
Carmen C. Sucharov, David P. Kao, J. David Port, Anis Karimpour-Fard, Robert A. Quaife, Wayne Minobe, Karin Nunley, Brian D. Lowes, Edward M. Gilbert, Michael R. Bristow
View: Text | PDF

Myocardial microRNAs associated with reverse remodeling in human heart failure

  • Text
  • PDF
Abstract

BACKGROUND. In dilated cardiomyopathies (DCMs) changes in expression of protein-coding genes are associated with reverse remodeling, and these changes can be regulated by microRNAs (miRs). We tested the general hypothesis that dynamic changes in myocardial miR expression are predictive of β-blocker–associated reverse remodeling.

METHODS. Forty-three idiopathic DCM patients (mean left ventricular ejection fraction 0.24 ± 0.09) were treated with β-blockers. Serial ventriculography and endomyocardial biopsies were performed at baseline, and after 3 and 12 months of treatment. Changes in RT-PCR (candidate miRs) or array-measured miRs were compared based on the presence (R) or absence (NR) of a reverse-remodeling response, and a miR-mRNA-function pathway analysis (PA) was performed.

RESULTS. At 3 months, 2 candidate miRs were selectively changed in Rs, decreases in miR-208a-3p and miR-591. PA revealed changes in miR-mRNA interactions predictive of decreased apoptosis and myocardial cell death. At 12 months, 5 miRs exhibited selective changes in Rs (decreases in miR-208a-3p, -208b-3p, 21-5p, and 199a-5p; increase in miR-1-3p). PA predicted decreases in apoptosis, cardiac myocyte cell death, hypertrophy, and heart failure, with increases in contractile and overall cardiac functions.

CONCLUSIONS. In DCMs, myocardial miRs predict the time-dependent reverse-remodeling response to β-blocker treatment, and likely regulate the expression of remodeling-associated miRs.

TRIAL REGISTRATION. ClinicalTrials.gov NCT01798992.

FUNDING. NIH 2R01 HL48013, 1R01 HL71118 (Bristow, PI); sponsored research agreements from Glaxo-SmithKline and AstraZeneca (Bristow, PI); NIH P20 HL101435 (Lowes, Port multi-PD/PI); sponsored research agreement from Miragen Therapeutics (Port, PI).

Authors

Carmen C. Sucharov, David P. Kao, J. David Port, Anis Karimpour-Fard, Robert A. Quaife, Wayne Minobe, Karin Nunley, Brian D. Lowes, Edward M. Gilbert, Michael R. Bristow

×

Ectonucleotidase CD39-driven control of postinfarction myocardial repair and rupture
Nadia R. Sutton, Takanori Hayasaki, Matthew C. Hyman, Anuli C. Anyanwu, Hui Liao, Danica Petrovic-Djergovic, Linda Badri, Amy E. Baek, Natalie Walker, Keigo Fukase, Yogendra Kanthi, Scott H. Visovatti, Ellen L. Horste, Jessica J. Ray, Sascha N. Goonewardena, David J. Pinsky
Nadia R. Sutton, Takanori Hayasaki, Matthew C. Hyman, Anuli C. Anyanwu, Hui Liao, Danica Petrovic-Djergovic, Linda Badri, Amy E. Baek, Natalie Walker, Keigo Fukase, Yogendra Kanthi, Scott H. Visovatti, Ellen L. Horste, Jessica J. Ray, Sascha N. Goonewardena, David J. Pinsky
View: Text | PDF

Ectonucleotidase CD39-driven control of postinfarction myocardial repair and rupture

  • Text
  • PDF
Abstract

Mechanical complications of myocardial infarction (MI) are often fatal. Little is known about endogenous factors that predispose to myocardial rupture after MI. Ectonucleoside triphosphate diphosphohydrolase (CD39) could be a critical mediator of propensity to myocardial rupture after MI due to its role in modulating inflammation and thrombosis. Using a model of permanent coronary artery ligation, rupture was virtually abrogated in cd39–/– mice versus cd39+/+ controls, with elevated fibrin and collagen deposition and marked neutrophil and macrophage influx. Macrophages were found to display increased surface expression of CD301 and CD206, marking a reparative phenotype, driven by increased extracellular ATP and IL-4 in the infarcted myocardium of cd39–/– mice. A myeloid-specific CD39-knockout mouse also demonstrated protection from rupture, with an attenuated rupture phenotype, suggesting that complete ablation of CD39 provides the greatest degree of protection in this model. Absence of CD39, either globally or in a myeloid lineage–restricted fashion, skews the phenotype toward alternatively activated (reparative) macrophage infiltration following MI. These studies reveal a previously unrecognized and unexpected role of endogenous CD39 to skew macrophage phenotype and promote a propensity to myocardial rupture after MI.

Authors

Nadia R. Sutton, Takanori Hayasaki, Matthew C. Hyman, Anuli C. Anyanwu, Hui Liao, Danica Petrovic-Djergovic, Linda Badri, Amy E. Baek, Natalie Walker, Keigo Fukase, Yogendra Kanthi, Scott H. Visovatti, Ellen L. Horste, Jessica J. Ray, Sascha N. Goonewardena, David J. Pinsky

×

Vps34 regulates myofibril proteostasis to prevent hypertrophic cardiomyopathy
Hirotaka Kimura, Satoshi Eguchi, Junko Sasaki, Keiji Kuba, Hiroki Nakanishi, Shunsuke Takasuga, Masakazu Yamazaki, Akiteru Goto, Hiroyuki Watanabe, Hiroshi Itoh, Yumiko Imai, Akira Suzuki, Noboru Mizushima, Takehiko Sasaki
Hirotaka Kimura, Satoshi Eguchi, Junko Sasaki, Keiji Kuba, Hiroki Nakanishi, Shunsuke Takasuga, Masakazu Yamazaki, Akiteru Goto, Hiroyuki Watanabe, Hiroshi Itoh, Yumiko Imai, Akira Suzuki, Noboru Mizushima, Takehiko Sasaki
View: Text | PDF

Vps34 regulates myofibril proteostasis to prevent hypertrophic cardiomyopathy

  • Text
  • PDF
Abstract

Hypertrophic cardiomyopathy (HCM) is a common heart disease with a prevalence of 1 in 500 in the general population. Several mutations in genes encoding cardiac proteins have been found in HCM patients, but these changes do not predict occurrence or prognosis and the molecular mechanisms underlying HCM remain largely elusive. Here we show that cardiac expression of vacuolar protein sorting 34 (Vps34) is reduced in a subset of HCM patients. In a mouse model, muscle-specific loss of Vps34 led to HCM-like manifestations and sudden death. Vps34-deficient hearts exhibited abnormal histopathologies, including myofibrillar disarray and aggregates containing αB-crystallin (CryAB). These features result from a block in the ESCRT-mediated proteolysis that normally degrades K63-polyubiquitinated CryAB. CryAB deposition was also found in myocardial specimens from a subset of HCM patients whose hearts showed decreased Vps34. Our results identify disruption of the previously unknown Vps34-CryAB axis as a potentially novel etiology of HCM.

Authors

Hirotaka Kimura, Satoshi Eguchi, Junko Sasaki, Keiji Kuba, Hiroki Nakanishi, Shunsuke Takasuga, Masakazu Yamazaki, Akiteru Goto, Hiroyuki Watanabe, Hiroshi Itoh, Yumiko Imai, Akira Suzuki, Noboru Mizushima, Takehiko Sasaki

×

Identifying the third dimension in 2D fluoroscopy to create 3D cardiac maps
Jasbir Sra, David Krum, Indrajit Choudhuri, Barry Belanger, Mark Palma, Donald Brodnick, Daniel B. Rowe
Jasbir Sra, David Krum, Indrajit Choudhuri, Barry Belanger, Mark Palma, Donald Brodnick, Daniel B. Rowe
View: Text | PDF

Identifying the third dimension in 2D fluoroscopy to create 3D cardiac maps

  • Text
  • PDF
Abstract

Three-dimensional cardiac mapping is important for optimal visualization of the heart during cardiac ablation for the treatment of certain arrhythmias. However, many hospitals and clinics worldwide cannot afford the high cost of the current mapping systems. We set out to determine if, using predefined algorithms, comparable 3D cardiac maps could be created by a new device that relies on data generated from single-plane fluoroscopy and patient recording and monitoring systems, without the need for costly equipment, infrastructure changes, or specialized catheters. The study included phantom and animal experiments to compare the prototype test device, Navik 3D, with the existing CARTO 3 System. The primary endpoint directly compared: (a) the 3D distance between the Navik 3D–simulated ablation location and the back-projected ground truth location of the pacing and mapping catheter electrode, and (b) the same distance for CARTO. The study’s primary objective was considered met if the 95% confidence lower limit was greater than 0.75% for the Navik 3D–CARTO difference between the 2 distances, or less than or equal to 2 mm. Study results showed that the Navik 3D performance was equivalent to the CARTO system, and that accurate 3D cardiac maps can be created using data from equipment that already exists in all electrophysiology labs.

Authors

Jasbir Sra, David Krum, Indrajit Choudhuri, Barry Belanger, Mark Palma, Donald Brodnick, Daniel B. Rowe

×

Low-dose dasatinib rescues cardiac function in Noonan syndrome
Jae-Sung Yi, Yan Huang, Andrea T. Kwaczala, Ivana Y. Kuo, Barbara E. Ehrlich, Stuart G. Campbell, Frank J. Giordano, Anton M. Bennett
Jae-Sung Yi, Yan Huang, Andrea T. Kwaczala, Ivana Y. Kuo, Barbara E. Ehrlich, Stuart G. Campbell, Frank J. Giordano, Anton M. Bennett
View: Text | PDF

Low-dose dasatinib rescues cardiac function in Noonan syndrome

  • Text
  • PDF
Abstract

Noonan syndrome (NS) is a common autosomal dominant disorder that presents with short stature, craniofacial dysmorphism, and cardiac abnormalities. Activating mutations in the PTPN11 gene encoding for the Src homology 2 (SH2) domain-containing protein tyrosine phosphatase-2 (SHP2) causes approximately 50% of NS cases. In contrast, NS with multiple lentigines (NSML) is caused by mutations that inactivate SHP2, but it exhibits some overlapping abnormalities with NS. Protein zero-related (PZR) is a SHP2-binding protein that is hyper-tyrosyl phosphorylated in the hearts of mice from NS and NSML, suggesting that PZR and the tyrosine kinase that catalyzes its phosphorylation represent common targets for these diseases. We show that the tyrosine kinase inhibitor, dasatinib, at doses orders of magnitude lower than that used for its anticancer activities inhibited PZR tyrosyl phosphorylation in the hearts of NS mice. Low-dose dasatinib treatment of NS mice markedly improved cardiomyocyte contractility and functionality. Remarkably, a low dose of dasatinib reversed the expression levels of molecular markers of cardiomyopathy and reduced cardiac fibrosis in NS and NSML mice. These results suggest that PZR/SHP2 signaling is a common target of both NS and NSML and that low-dose dasatinib may represent a unifying therapy for the treatment of PTPN11-related cardiomyopathies.

Authors

Jae-Sung Yi, Yan Huang, Andrea T. Kwaczala, Ivana Y. Kuo, Barbara E. Ehrlich, Stuart G. Campbell, Frank J. Giordano, Anton M. Bennett

×

Interleukin 6 regulates psoriasiform inflammation–associated thrombosis
Yunmei Wang, Jackelyn B. Golden, Yi Fritz, Xiufen Zhang, Doina Diaconu, Maya I. Camhi, Huiyun Gao, Sean M. Dawes, Xianying Xing, Santhi K. Ganesh, Johann E. Gudjonsson, Daniel I. Simon, Thomas S. McCormick, Nicole L. Ward
Yunmei Wang, Jackelyn B. Golden, Yi Fritz, Xiufen Zhang, Doina Diaconu, Maya I. Camhi, Huiyun Gao, Sean M. Dawes, Xianying Xing, Santhi K. Ganesh, Johann E. Gudjonsson, Daniel I. Simon, Thomas S. McCormick, Nicole L. Ward
View: Text | PDF

Interleukin 6 regulates psoriasiform inflammation–associated thrombosis

  • Text
  • PDF
Abstract

Psoriasis patients are at increased risk of heart attack and stroke and have elevated MRP8/14 levels that predict heart attack. The KC-Tie2 psoriasiform mouse model exhibits elevated MRP8/14 and is prothrombotic. Mrp14–/– mice, in contrast, are protected from thrombosis, but, surprisingly, KC-Tie2xMrp14–/– mice remain prothrombotic. Treating KC-Tie2xMrp14–/– mice with anti–IL-23p19 antibodies reversed the skin inflammation, improved thrombosis, and decreased IL-6. In comparison, IL-6 deletion from KC-Tie2 animals improved thrombosis despite sustained skin inflammation, suggesting that thrombosis improvements following IL-23 inhibition occur secondary to IL-6 decreases. Psoriasis patient skin has elevated IL-6 and IL-6 receptor is present in human coronary atheroma, supporting a link between skin and distant vessel disease in patient tissue. Together, these results identify a critical role for skin-derived IL-6 linking skin inflammation with thrombosis, and shows that in the absence of IL-6 the connection between skin inflammation and thrombosis comorbidities is severed.

Authors

Yunmei Wang, Jackelyn B. Golden, Yi Fritz, Xiufen Zhang, Doina Diaconu, Maya I. Camhi, Huiyun Gao, Sean M. Dawes, Xianying Xing, Santhi K. Ganesh, Johann E. Gudjonsson, Daniel I. Simon, Thomas S. McCormick, Nicole L. Ward

×

Bcl-2–associated athanogene 3 protects the heart from ischemia/reperfusion injury
Feifei Su, Valerie D. Myers, Tijana Knezevic, JuFang Wang, Erhe Gao, Muniswamy Madesh, Farzaneh G. Tahrir, Manish K. Gupta, Jennifer Gordon, Joseph Rabinowitz, Frederick V. Ramsey, Douglas G. Tilley, Kamel Khalili, Joseph Y. Cheung, Arthur M. Feldman
Feifei Su, Valerie D. Myers, Tijana Knezevic, JuFang Wang, Erhe Gao, Muniswamy Madesh, Farzaneh G. Tahrir, Manish K. Gupta, Jennifer Gordon, Joseph Rabinowitz, Frederick V. Ramsey, Douglas G. Tilley, Kamel Khalili, Joseph Y. Cheung, Arthur M. Feldman
View: Text | PDF

Bcl-2–associated athanogene 3 protects the heart from ischemia/reperfusion injury

  • Text
  • PDF
Abstract

Bcl-2–associated athanogene 3 (BAG3) is an evolutionarily conserved protein expressed at high levels in the heart and the vasculature and in many cancers. While altered BAG3 expression has been associated with cardiac dysfunction, its role in ischemia/reperfusion (I/R) is unknown. To test the hypothesis that BAG3 protects the heart from reperfusion injury, in vivo cardiac function was measured in hearts infected with either recombinant adeno-associated virus serotype 9–expressing (rAAV9-expressing) BAG3 or GFP and subjected to I/R. To elucidate molecular mechanisms by which BAG3 protects against I/R injury, neonatal mouse ventricular cardiomyocytes (NMVCs) in which BAG3 levels were modified by adenovirus expressing (Ad-expressing) BAG3 or siBAG3 were exposed to hypoxia/reoxygenation (H/R). H/R significantly reduced NMVC BAG3 levels, which were associated with enhanced expression of apoptosis markers, decreased expression of autophagy markers, and reduced autophagy flux. The deleterious effects of H/R on apoptosis and autophagy were recapitulated by knockdown of BAG3 with Ad-siBAG3 and were rescued by Ad-BAG3. In vivo, treatment of mice with rAAV9-BAG3 prior to I/R significantly decreased infarct size and improved left ventricular function when compared with mice receiving rAAV9-GFP and improved markers of autophagy and apoptosis. These findings suggest that BAG3 may provide a therapeutic target in patients undergoing reperfusion after myocardial infarction.

Authors

Feifei Su, Valerie D. Myers, Tijana Knezevic, JuFang Wang, Erhe Gao, Muniswamy Madesh, Farzaneh G. Tahrir, Manish K. Gupta, Jennifer Gordon, Joseph Rabinowitz, Frederick V. Ramsey, Douglas G. Tilley, Kamel Khalili, Joseph Y. Cheung, Arthur M. Feldman

×

Acute hemodynamic effects of inhaled sodium nitrite in pulmonary hypertension associated with heart failure with preserved ejection fraction
Marc A. Simon, Rebecca R. Vanderpool, Mehdi Nouraie, Timothy N. Bachman, Pamela M. White, Masataka Sugahara, John Gorcsan III, Ed L. Parsley, Mark T. Gladwin
Marc A. Simon, Rebecca R. Vanderpool, Mehdi Nouraie, Timothy N. Bachman, Pamela M. White, Masataka Sugahara, John Gorcsan III, Ed L. Parsley, Mark T. Gladwin
View: Text | PDF

Acute hemodynamic effects of inhaled sodium nitrite in pulmonary hypertension associated with heart failure with preserved ejection fraction

  • Text
  • PDF
Abstract

BACKGROUND. Pulmonary hypertension (PH) is associated with poor outcomes, yet specific treatments only exist for a small subset of patients. The most common form of PH is that associated with left heart disease (Group 2), for which there is no approved therapy. Nitrite has shown efficacy in preclinical animal models of Group 1 and 2 PH, as well as in patients with left heart failure with preserved ejection fraction (HFpEF). We evaluated the safety and efficacy of a potentially novel inhaled formulation of nitrite in PH-HFpEF patients as compared with Group 1 and 3 PH.

METHODS. Cardiopulmonary hemodynamics were recorded after acute administration of inhaled nitrite at 2 doses, 45 and 90 mg. Safety endpoints included change in systemic blood pressure and methemoglobin levels. Responses were also compared with those administered inhaled nitric oxide.

RESULTS. Thirty-six patients were enrolled (10 PH-HFpEF, 20 Group 1 pulmonary arterial hypertension patients on background PH-specific therapy, and 6 Group 3 PH). Drug administration was well tolerated. Nitrite inhalation significantly lowered pulmonary, right atrial, and pulmonary capillary wedge pressures, most pronounced in patients with PH-HFpEF. There was a modest decrease in cardiac output and systemic blood pressure. Pulmonary vascular resistance decreased only in Group 3 PH patients. There was substantial increase in pulmonary artery compliance, most pronounced in patients with PH-HFpEF.

CONCLUSIONS. Inhaled nitrite is safe in PH patients and may be efficacious in PH-HFpEF and Group 3 PH primarily via improvements in left and right ventricular filling pressures and pulmonary artery compliance. The lack of change in pulmonary vascular resistance likely may limit efficacy for Group 1 patients.

TRIAL REGISTRATION. ClinicalTrials.gov NCT01431313

FUNDING. This work was supported in part by the NIH grants 2P01HL103455 (to MAS and MTG), R01HL098032 (to MTG), and R01HL096973 (to MTG), and Mast Therapeutics, Inc.

Authors

Marc A. Simon, Rebecca R. Vanderpool, Mehdi Nouraie, Timothy N. Bachman, Pamela M. White, Masataka Sugahara, John Gorcsan III, Ed L. Parsley, Mark T. Gladwin

×
  • ← Previous
  • 1
  • 2
  • …
  • 32
  • 33
  • 34
  • 35
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts