Septic arthritis, the most severe joint disease, is frequently caused by Staphylococcus aureus (S. aureus). A substantial proportion of patients with septic arthritis experience poor joint outcomes, often necessitating joint replacement surgery. Here, we show that monocyte depletion confers full protection against bone erosion in a septic arthritis mouse model. In the infected synovium, Ly6Chigh monocytes exhibited increased expression of osteoclastogenesis-related molecules, including CCR2, c-Fms, and RANK. S. aureus lipoproteins induced elevated levels of RANKL, MCSF, and CCL-2 in joints, with synovial fibroblasts identified as the major RANKL producer. Anti-RANKL treatment prevented bone destruction in both local and hematogenous septic arthritis murine models. Importantly, combining anti-RANKL treatment with antibiotics provided robust protection against joint damage. Our results indicate that the infiltration and transformation of monocytes into bone-destructive, osteoclast-like cells are key mechanisms in septic arthritis. Combining anti-RANKL and antibiotic therapy represents a promising therapy against this devastating disease.
Zhicheng Hu, Meghshree Deshmukh, Anders Jarneborn, Miriam Bollmann, Carmen Corciulo, Pradeep Kumar Kopparapu, Abukar Ali, Mattias N.D. Svensson, Cecilia Engdahl, Rille Pullerits, Majd Mohammad, Tao Jin
Mutations in the anoctamin5 (ANO5) gene can lead to musculoskeletal disorders, with monoallelic (autosomal dominant) mutations typically presenting as skeletal abnormalities known as Gnathodiaphyseal dysplasia (GDD). Clinically, GDD is characterized by thickened cortices of long bones and mandibles, narrowed medullary cavities, and increased bone fragility. While autophagy is necessary in regulating bone formation, the specific relationship between ANO5 and autophagy remains poorly understood. In this study, we demonstrated that Ano5 deficiency activates autophagy in mouse cranial osteoblasts (mCOBs), leading to enhanced osteogenic capacity in Ano5-/- mCOBs. The application of 3-Methyladenine (3-MA) and chloroquine (CQ) reversed the excessive osteogenesis observed in Ano5-/- mCOBs. Further analysis revealed that Ano5 deficiency upregulates the expression of ATG9A, and silencing ATG9A significantly reduces both autophagy and osteogenic activity in Ano5-/- mCOBs. Additionally, the AMP-activated protein kinase (AMPK) was found to regulate ATG9A positively, and inhibiting AMPK reduced ATG9A expression, which in turn mitigated excessive osteogenesis of Ano5-/- mCOBs. Moreover, in vivo experiments confirmed that treatment with 3-MA alleviates the bone phenotype abnormalities in Ano5-/- mice. These findings suggest that Ano5 negatively regulates autophagy, contributing to illuminate pathogenesis of GDD. Meanwhile, this research highlights potential therapeutic strategies targeting autophagy to pave the way for the clinical manifestations of GDD.
Shuai Zhang, Shengnan Wang, Sirui Liu, Xiu Liu, Mingyue Zhang, Huichong Xu, Xiaoyu Wang, Hongyu Li, Ying Hu
Intervertebral disc degeneration (IDD) is associated with low back pain, a leading cause of disability worldwide. Fibrosis of nucleus pulposus (NP) is a principal component of IDD, featuring an accumulation of myofibroblast-like cells. Previous study indicated matrix metalloproteinase 12 (MMP12) expression is upregulated in IDD but its role remains largely unexplored. We here showed that TGF-β1 could promote myofibroblast-like differentiation of human NP cells along with an induction of MMP12 expression. Intriguingly, MMP12 knockdown not only ameliorated the myofibroblastic phenotype but also increased chondrogenic marker expression. Transcriptome analysis revealed that the MMP12-mediated acquisition of myofibroblast phenotype was coupled to processes related to fibroblast activation and osteogenesis and pathways mediated by MAPK and Wnt signaling. Injury induced mouse IDD showed NP fibrosis with marked increase of collagen deposition and αSMA-expressing cells. In contrast, MMP12 knockout mice exhibited largely reduced collagen I and III but increased collagen II and aggrecan deposition, indicating an inhibition of NP fibrosis along with an enhanced cartilaginous matrix remodeling. Consistently, an increase of SOX9+/CNMD+ but decrease of αSMA+ NP cells was found in the knockout. Altogether, our findings suggest a pivotal role of MMP12 in myofibroblast generation, thereby regulating NP fibrosis in IDD.
Yi Sun, Wai Kit Tam, Manyu Zhu, Qiuji Lu, Mengqi Yu, Yuching Hsu, Peng Chen, Peng Zhang, Minmin Lyu, Yongcan Huang, Zhaomin Zheng, Xintao Zhang, Victor Y. Leung
Craniosynostosis (CRS) is characterized by the development of abnormal cranial suture ossification and premature fusion. Despite the identification of several associated genetic disorders, the genetic determinants of CRS remain poorly understood. In this study, we conducted integrative analyses on 225 exomes, comprising 121 CRS probands and 104 parental exomes (52 trios). These analyses encompassed de novo and pathogenic variants, and digenic combinations within haploinsufficient genes harboring rare variants. Our analysis unveils a shared molecular network between genes associated with CRS and those linked to skeletal and neurodevelopmental disorders, with a notable enrichment of deleterious variants within haploinsufficient genes. Additionally, we identified a unique digenic pair (IL6ST and TRPS1) within haploinsufficient genes that was present in 2 patients with nonsyndromic CRS but absent in parents or 1,048 population controls. In vitro experiments provided evidence that the identified missense variants were hypomorphs, and accelerated bone mineralization could result from the additive effects of diminished IL6ST and TRPS1 activities in osteoblasts. Overall, our study underscores the important role of rare variations in haploinsufficient genes and suggests that in a subset of undiagnosed patients, the CRS phenotype may arise from multiple genetic variations.
Jung Woo Yu, Jihoon G. Yoon, Chaerim Han, Shin Hye Noh, Dong Min Shin, Yu-Mi Yang, Yong Oock Kim, Kyu-Won Shim, Min Goo Lee
Renal osteodystrophy is commonly seen in patients with chronic kidney disease (CKD) due to disrupted mineral homeostasis. Given the impaired renal function in these patients, common anti-resorptive agents, including bisphosphonates, must be used with caution or even contraindicated. Therefore, an alternative therapy without renal burden to combat renal osteodystrophy is urgently needed. Here, we report that clinically relevant aerobic exercise significantly prevents high-turnover renal osteodystrophy in CKD mouse and patients without compromising renal function. Mechanistically, 4-week aerobic exercise in CKD mice increased expression of skeletal muscle PPARγ coactivator-1α (PGC-1α) and circulating irisin. Both exercise and irisin administration significantly activated osteoblasts, but not osteoclasts, via integrin αvβ5, thereby conferring bone quality benefits. Removal of irisin-influenced thermogenic adipose tissues or genetic ablation of uncoupling protein 1 did not alter the irisin-conferred anti-osteodystrophy effect. Importantly, in a pilot clinical study, 12-week aerobic exercise in patients with high-grade CKD significantly increased circulating irisin and prevented osteodystrophy progression, without detectable renal burden. The combination of irisin and current anti-resorptive agents effectively rescued renal osteodystrophy in mice. Our work provides mechanistic insights into the role of exercise and irisin in renal osteodystrophy, and highlights a clinically relevant, low-cost, kidney-friendly therapy for patients with this devastating disease.
Meng Wu, Huilan Li, Xiaoting Sun, Rongrong Zhong, Linli Cai, Ruibo Chen, Madiya Madeniyet, Kana Ren, Zhen Peng, Yujie Yang, Weiqin Chen, Yanling Tu, Miaoxin Lai, Jinxiu Deng, Yuting Wu, Shumin Zhao, Qingyan Ruan, Mei Rao, Sisi Xie, Ying Ye, Jianxin Wan
Osteoarthritis (OA) shows various clinical manifestations depending on the status of its joint components. We aimed to identify the synovial cell subsets responsible for OA pathophysiology by comprehensive analyses of human synovium samples in single-cell resolution. Two distinct OA synovial tissue groups were classified by gene expression profiles in RNA-Seq: inflammatory and fibrotic. The inflammatory group exhibited high expression of inflammatory cytokines, histologically inflammatory infiltrate, and a more severe pain score. The fibrotic group showed higher expression of fibroblast growth factor (FGFs) and bone morphogenetic proteins (BMPs), showed histologically perivascular fibrosis, and showed a lower pain score. In single-cell RNA-Seq (scRNA-Seq) of synovial cells, MERTKloCD206lo macrophages and CD34hi fibroblasts were associated with the inflammatory and fibrotic groups, respectively. Among the 3 fibroblast subsets, CD34loTHY1lo and CD34loTHY1hi fibroblasts were influenced by synovial immune cells, whereas CD34hi fibroblasts were influenced by mural and endothelial cells. Particularly, in CD34hi fibroblast subsets, CD34hiCD70hi fibroblasts promoted proliferation of Tregs, potentially suppressing synovitis and protecting articular cartilage. Elucidation of the mechanisms underlying the regulation of these synovial cell subsets may lead to novel strategies for OA therapeutics.
Junya Miyahara, Yasunori Omata, Ryota Chijimatsu, Hiroyuki Okada, Hisatoshi Ishikura, Junya Higuchi, Naohiro Tachibana, Kosei Nagata, Shoichiro Tani, Kenichi Kono, Kohei Kawaguchi, Ryota Yamagami, Hiroshi Inui, Shuji Taketomi, Yasuhide Iwanaga, Asuka Terashima, Fumiko Yano, Masahide Seki, Yutaka Suzuki, Roland Baron, Sakae Tanaka, Taku Saito
Transient receptor potential channel 1 (TRPC1) is a widely expressed mechanosensitive ion channel located within the endoplasmic reticulum membrane, crucial for refilling depleted internal calcium stores during activation of calcium-dependent signaling pathways. Here, we demonstrate that TRPC1 activity is protective within cartilage homeostasis in the prevention of cellular senescence associated cartilage breakdown during mechanical and inflammatory challenge. We reveal that TRPC1 loss is associated with early stages of osteoarthritis (OA) and plays a non-redundant role in calcium signaling in chondrocytes. Trpc1-/- mice subjected to destabilization of the medial meniscus induced OA developed a more severe OA phenotype than wild type controls. During early OA development, Trpc1-/- mice displayed an increased chondrocyte survival rate, however remaining cells displayed features of senescence including p16INK4a expression and decreased Sox9. RNA sequencing identified differentially expressed genes related to cell number, apoptosis and extracellular matrix organization. Trpc1-/-chondrocytes exhibited accelerated dedifferentiation, while demonstrating an increased susceptibility to cellular senescence. Targeting the mechanism of Trpc1 activation may be a promising therapeutic strategy in osteoarthritis prevention.
Meike Sambale, Starlee Lively, Osvaldo Espin-Garcia, Pratibha Potla, Chiara Pastrello, Sarah Bödecker, Linda Wessendorf, Simon Kleimann, Peter Paruzel, Rojiar Asgarian, Alexandra Tosun, Johanna Intemann, Jessica Bertrand, Francesco Dell'Accio, Mohit Kapoor, Thomas Pap, Joanna Sherwood
Regeneration of orofacial bone defects caused by inflammatory-related diseases or trauma remains an unmet challenge. Parathyroid hormone 1 receptor (PTH1R) signaling is a key mediator of bone remodeling whereas the regulatory mechanisms of PTH1R signaling in oral bone under homeostatic or inflammatory conditions have not been demonstrated by direct genetic evidence. Here we observed that deletion of PTH1R in Gli1+-progenitors led to increased osteogenesis and osteoclastogenesis. Single-cell and bulk RNA-seq analysis revealed that PTH1R suppresses the osteogenic potential of Gli1+-progenitors during inflammation. Moreover, we identified upregulated IGF1 expression upon PTH1R deletion. Dual deletion of IGF1 and PTH1R ameliorated the bone remodeling phenotypes in PTH1R-defienct mice. Furthermore, in vivo evidence revealed an inverse relationship between PTH1R and Hedgehog signaling, which was responsible for the upregulated IGF1 production. Our work underscored the negative feedback between PTH1R and IGF1 in craniofacial bone turnover, and revealed mechanisms modulating orofacial bone remodeling.
Yi Fan, Ping Lyu, Jiahe Wang, Yali Wei, Zucen Li, Shiwen Zhang, Takehito Ouchi, Junjun Jing, Quan Yuan, Clifford J. Rosen, Chenchen Zhou
Glucocorticoid-induced osteoporosis (GIOP) lacks fully effective treatments. This study investigated the role of Piezo1, a mechanosensitive ion channel component 1, in GIOP. We found reduced Piezo1 expression in cortical bone osteocytes from patients with GIOP and a GIOP mouse model. Yoda1, a Piezo1 agonist, enhanced the mechanical stress response and bone mass and strength, which were diminished by dexamethasone (DEX) administration in GIOP mice. RNA-seq revealed that Yoda1 elevated Piezo1 expression by activating the key transcription factor Hes1, followed by enhanced CaM kinase II and Akt phosphorylation in osteocytes. This improved the lacuno-canalicular network and reduced sclerostin production and the receptor activator of NF-κB/osteoprotegerin ratio, which were mitigated by DEX. Comparative analysis of mouse models and human GIOP cortical bone revealed downregulation of mechanostimulated osteogenic factors, such as osteocrin, and cartilage differentiation markers in osteoprogenitor cells. In human periosteum-derived cells, DEX suppressed differentiation into osteoblasts, but Yoda1 rescued this effect. Our findings suggest that reduced Piezo1 expression and activity in osteocytes and periosteal cells contribute to GIOP, and Yoda1 may offer a novel therapeutic approach by restoring mechanosensitivity.
Nagahiro Ochiai, Yuki Etani, Takaaki Noguchi, Taihei Miura, Takuya Kurihara, Yuji Fukuda, Hidetoshi Hamada, Keisuke Uemura, Kazuma Takashima, Masashi Tamaki, Teruya Ishibashi, Shohei Ito, Satoshi Yamakawa, Takashi Kanamoto, Seiji Okada, Ken Nakata, Kosuke Ebina
Mechanical loading, essential for bone health, promotes bone formation and remodeling. However, the positive response diminishes in cases of disuse and aging, leading to bone loss and an increased fracture risk. This study demonstrates that activating hemichannels (HCs) using a connexin 43 (Cx43) antibody, Cx43(M2), in bone osteocytes revitalizes aging and disused bones. Using a hindlimb suspension (HLS) disuse model and a tibial mechanical loading model, we found that Cx43(M2) inhibited bone loss and osteocyte apoptosis induced by unloading in 16-week-old adult mice. Additionally, it enhanced bone mass in response to tibial loading in 22-month-old aged mice. The HC opening released bone anabolic factor prostaglandin E2 (PGE2) and suppressed catabolic factor sclerostin (SOST). This suppressed the increase of cortical bone formation and reduction of bone resorption during unloading and promoted trabecular and cortical bone formation during loading. Cx43(M2)-induced HC opening, coupled with PGE2 release, effectively rescued unloading-induced bone loss and restored the diminished anabolic response of aged bones to mechanical loading. Activating HCs with the Cx43 antibody holds promise as a de novo therapeutic approach, as it can overcome the limitations of existing treatment regimens for treating bone loss and osteoporosis associated with aging and disuse.
Dezhi Zhao, Chao Tu, Lidan Zhang, Teja Guda, Sumin Gu, Jean X. Jiang
No posts were found with this tag.