Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

N6-methyladenosine (m6A) dysregulation contributes to network excitability in temporal lobe epilepsy
Justine Mathoux, … , David C. Henshall, Gary P. Brennan
Justine Mathoux, … , David C. Henshall, Gary P. Brennan
Published July 22, 2025
Citation Information: JCI Insight. 2025;10(14):e188612. https://doi.org/10.1172/jci.insight.188612.
View: Text | PDF
Research Article Cell biology Neuroscience

N6-methyladenosine (m6A) dysregulation contributes to network excitability in temporal lobe epilepsy

  • Text
  • PDF
Abstract

Analogous to DNA methylation and protein phosphorylation, it is now well understood that RNA is also subject to extensive processing and modification. N6-methyladenosine (m6A) is the most abundant internal RNA modification and regulates RNA fate in several ways, including stability and translational efficiency. The role of m6A in both experimental and human epilepsy remains unknown. Here, we used transcriptome-wide m6A arrays to obtain a detailed analysis of the hippocampal m6A-ome from both mouse and human epilepsy samples. We combined this with human proteomic analyses and show that epileptic tissue displays disrupted metabolic and autophagic pathways that may be directly linked to m6A processing. Specifically, our results suggest that m6A levels inversely correlate with protein pathway activation. Finally, we show that elevated levels of m6A decrease seizure susceptibility and severity in mice. Together, our findings indicate that m6A represents an additional layer of gene regulation complexity in epilepsy and may contribute to the pathomechanisms that drive the development and maintenance of hyperexcitable brain networks.

Authors

Justine Mathoux, Marc-Michel Wilson, Sujithra Srinivas, Gabrielle Litovskich, Leticia Villalba Benito, Cindy Tran, Jaideep Kesavan, Aileen Harnett, Theresa Auer, Amaya Sanz-Rodriguez, Mohammad Kh. A.E. Alkhayyat, Mairéad Sullivan, Zining Liu, Yifan Huang, Austin Lacey, Norman Delanty, Jane Cryan, Francesca M. Brett, Michael A. Farrell, Donncha F. O’Brien, Pablo M. Casillas-Espinosa, Eva M. Jimenez-Mateos, Jeffrey C. Glennon, Mary Canavan, David C. Henshall, Gary P. Brennan

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts