Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

NOX4 inhibition promotes the remodeling of dystrophic muscle
David W. Hammers
David W. Hammers
Published October 24, 2022
Citation Information: JCI Insight. 2022;7(20):e158316. https://doi.org/10.1172/jci.insight.158316.
View: Text | PDF
Research Article Muscle biology Therapeutics

NOX4 inhibition promotes the remodeling of dystrophic muscle

  • Text
  • PDF
Abstract

The muscular dystrophies (MDs) are genetic muscle diseases that result in progressive muscle degeneration followed by the fibrotic replacement of affected muscles as regenerative processes fail. Therapeutics that specifically address the fibrosis and failed regeneration associated with MDs represent a major unmet clinical need for MD patients, particularly those with advanced-stage disease progression. The current study investigated targeting NAD(P)H oxidase 4 (NOX4) as a potential strategy to reduce fibrosis and promote regeneration in disease-burdened muscle that models Duchenne muscular dystrophy (DMD). NOX4 was elevated in the muscles of dystrophic mice and DMD patients, localizing primarily to interstitial cells located between muscle fibers. Genetic and pharmacological targeting of NOX4 significantly reduced fibrosis in dystrophic respiratory and limb muscles. Mechanistically, NOX4 targeting decreased the number of fibrosis-depositing cells (myofibroblasts) and restored the number of muscle-specific stem cells (satellite cells) localized to their physiological niche, thereby rejuvenating muscle regeneration. Furthermore, acute inhibition of NOX4 was sufficient to induce apoptotic clearing of myofibroblasts within dystrophic muscle. These data indicate that targeting NOX4 is an effective strategy to promote the beneficial remodeling of disease-burdened muscle representative of DMD and, potentially, other MDs and muscle pathologies.

Authors

David W. Hammers

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts