Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

CC16 augmentation reduces exaggerated COPD-like disease in Cc16-deficient mice
Joselyn Rojas-Quintero, Maria Eugenia Laucho-Contreras, Xiaoyun Wang, Quynh-Anh Fucci, Patrick R. Burkett, Se-Jin Kim, Duo Zhang, Yohannes Tesfaigzi, Yuhong Li, Abhiram R. Bhashyam, Zhang Li, Haider Khamas, Bartolome Celli, Aprile L. Pilon, Francesca Polverino, Caroline A. Owen
Joselyn Rojas-Quintero, Maria Eugenia Laucho-Contreras, Xiaoyun Wang, Quynh-Anh Fucci, Patrick R. Burkett, Se-Jin Kim, Duo Zhang, Yohannes Tesfaigzi, Yuhong Li, Abhiram R. Bhashyam, Zhang Li, Haider Khamas, Bartolome Celli, Aprile L. Pilon, Francesca Polverino, Caroline A. Owen
View: Text | PDF
Research Article Immunology Inflammation

CC16 augmentation reduces exaggerated COPD-like disease in Cc16-deficient mice

  • Text
  • PDF
Abstract

Low Club Cell 16 kDa protein (CC16) plasma levels are linked to accelerated lung function decline in patients with chronic obstructive pulmonary disease (COPD). Cigarette smoke–exposed (CS-exposed) Cc16–/– mice have exaggerated COPD-like disease associated with increased NF-κB activation in their lungs. It is unclear whether CC16 augmentation can reverse exaggerated COPD in CS-exposed Cc16–/– mice and whether increased NF-κB activation contributes to the exaggerated COPD in CS-exposed Cc16–/– lungs. CS-exposed WT and Cc16–/– mice were treated with recombinant human CC16 (rhCC16) or an NF-κB inhibitor versus vehicle beginning at the midpoint of the exposures. COPD-like disease and NF-κB activation were measured in the lungs. RhCC16 limited the progression of emphysema, small airway fibrosis, and chronic bronchitis-like disease in WT and Cc16–/– mice partly by reducing pulmonary inflammation (reducing myeloid leukocytes and/or increasing regulatory T and/or B cells) and alveolar septal cell apoptosis, reducing NF-κB activation in CS-exposed Cc16–/– lungs, and rescuing the reduced Foxj1 expression in CS-exposed Cc16–/– lungs. IMD0354 treatment reduced exaggerated lung inflammation and rescued the reduced Foxj1 expression in CS-exposed Cc16–/– mice. RhCC16 treatment reduced NF-κB activation in luciferase reporter A549 cells. Thus, rhCC16 treatment limits COPD progression in CS-exposed Cc16–/– mice partly by inhibiting NF-κB activation and represents a potentially novel therapeutic approach for COPD.

Authors

Joselyn Rojas-Quintero, Maria Eugenia Laucho-Contreras, Xiaoyun Wang, Quynh-Anh Fucci, Patrick R. Burkett, Se-Jin Kim, Duo Zhang, Yohannes Tesfaigzi, Yuhong Li, Abhiram R. Bhashyam, Zhang Li, Haider Khamas, Bartolome Celli, Aprile L. Pilon, Francesca Polverino, Caroline A. Owen

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts