Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

An Hb-mediated circulating macrophage contributing to pulmonary vascular remodeling in sickle cell disease
Katherine Redinus, Jin Hyen Baek, Ayla Yalamanoglu, Hye Kyung H. Shin, Radu Moldova, Julie W. Harral, Delaney Swindle, David Pak, Scott K. Ferguson, Rachelle Nuss, Kathryn Hassell, Eva Nozik-Grayck, Andre F. Palmer, Mehdi A. Fini, Vijaya Karoor, Kurt R. Stenmark, Paul W. Buehler, David C. Irwin
Katherine Redinus, Jin Hyen Baek, Ayla Yalamanoglu, Hye Kyung H. Shin, Radu Moldova, Julie W. Harral, Delaney Swindle, David Pak, Scott K. Ferguson, Rachelle Nuss, Kathryn Hassell, Eva Nozik-Grayck, Andre F. Palmer, Mehdi A. Fini, Vijaya Karoor, Kurt R. Stenmark, Paul W. Buehler, David C. Irwin
View: Text | PDF
Research Article Cell biology Vascular biology

An Hb-mediated circulating macrophage contributing to pulmonary vascular remodeling in sickle cell disease

  • Text
  • PDF
Abstract

Circulating macrophages recruited to the lung contribute to pulmonary vascular remodeling in various forms of pulmonary hypertension (PH). In this study we investigated a macrophage phenotype characterized by intracellular iron accumulation and expression of antioxidant (HO-1), vasoactive (ET-1), and proinflammatory (IL-6) mediators observed in the lung tissue of deceased sickle cell disease (SCD) patients with diagnosed PH. To this end, we evaluated an established rat model of group 5 PH that is simultaneously exposed to free hemoglobin (Hb) and hypobaric hypoxia (HX). Here, we tested the hypothesis that pulmonary vascular remodeling observed in human SCD with concomitant PH could be replicated and mechanistically driven in our rat model by a similar macrophage phenotype with iron accumulation and expression of a similar mixture of antioxidant (HO-1), vasoactive (ET-1), and inflammatory (IL-6) proteins. Our data suggest phenotypic similarities between pulmonary perivascular macrophages in our rat model and human SCD with PH, indicating a potentially novel maladaptive immune response to concomitant bouts of Hb and HX exposure. Moreover, by knocking out circulating macrophages with gadolinium trichloride (GdCl3), the response to combined Hb and hypobaric HX was significantly attenuated in rats, suggesting a critical role for macrophages in the exacerbation of SCD PH.

Authors

Katherine Redinus, Jin Hyen Baek, Ayla Yalamanoglu, Hye Kyung H. Shin, Radu Moldova, Julie W. Harral, Delaney Swindle, David Pak, Scott K. Ferguson, Rachelle Nuss, Kathryn Hassell, Eva Nozik-Grayck, Andre F. Palmer, Mehdi A. Fini, Vijaya Karoor, Kurt R. Stenmark, Paul W. Buehler, David C. Irwin

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts