Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Efficient exon skipping of SGCG mutations mediated by phosphorodiamidate morpholino oligomers
Eugene J. Wyatt, … , Mayana Zatz, Elizabeth M. McNally
Eugene J. Wyatt, … , Mayana Zatz, Elizabeth M. McNally
Published May 3, 2018
Citation Information: JCI Insight. 2018;3(9):e99357. https://doi.org/10.1172/jci.insight.99357.
View: Text | PDF
Research Article Genetics Muscle biology

Efficient exon skipping of SGCG mutations mediated by phosphorodiamidate morpholino oligomers

  • Text
  • PDF
Abstract

Exon skipping uses chemically modified antisense oligonucleotides to modulate RNA splicing. Therapeutically, exon skipping can bypass mutations and restore reading frame disruption by generating internally truncated, functional proteins to rescue the loss of native gene expression. Limb-girdle muscular dystrophy type 2C is caused by autosomal recessive mutations in the SGCG gene, which encodes the dystrophin-associated protein γ-sarcoglycan. The most common SGCG mutations disrupt the transcript reading frame abrogating γ-sarcoglycan protein expression. In order to treat most SGCG gene mutations, it is necessary to skip 4 exons in order to restore the SGCG transcript reading frame, creating an internally truncated protein referred to as Mini-Gamma. Using direct reprogramming of human cells with MyoD, myogenic cells were tested with 2 antisense oligonucleotide chemistries, 2’-O-methyl phosphorothioate oligonucleotides and vivo–phosphorodiamidate morpholino oligomers, to induce exon skipping. Treatment with vivo–phosphorodiamidate morpholino oligomers demonstrated efficient skipping of the targeted exons and corrected the mutant reading frame, resulting in the expression of a functional Mini-Gamma protein. Antisense-induced exon skipping of SGCG occurred in normal cells and those with multiple distinct SGCG mutations, including the most common 521ΔT mutation. These findings demonstrate a multiexon-skipping strategy applicable to the majority of limb-girdle muscular dystrophy 2C patients.

Authors

Eugene J. Wyatt, Alexis R. Demonbreun, Ellis Y. Kim, Megan J. Puckelwartz, Andy H. Vo, Lisa M. Dellefave-Castillo, Quan Q. Gao, Mariz Vainzof, Rita C. M. Pavanello, Mayana Zatz, Elizabeth M. McNally

×

Full Text PDF

Download PDF (1.44 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts