Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Activating PRKACB somatic mutation in cortisol-producing adenomas
Stéphanie Espiard, Matthias J. Knape, Kerstin Bathon, Guillaume Assié, Marthe Rizk-Rabin, Simon Faillot, Windy Luscap-Rondof, Daniel Abid, Laurence Guignat, Davide Calebiro, Friedrich W. Herberg, Constantine A. Stratakis, Jérôme Bertherat
Stéphanie Espiard, Matthias J. Knape, Kerstin Bathon, Guillaume Assié, Marthe Rizk-Rabin, Simon Faillot, Windy Luscap-Rondof, Daniel Abid, Laurence Guignat, Davide Calebiro, Friedrich W. Herberg, Constantine A. Stratakis, Jérôme Bertherat
View: Text | PDF
Research Article Endocrinology Genetics

Activating PRKACB somatic mutation in cortisol-producing adenomas

  • Text
  • PDF
Abstract

Mutations in the gene encoding the protein kinase A (PKA) catalytic subunit α have been found to be responsible for cortisol-producing adenomas (CPAs). In this study, we identified by whole-exome sequencing the somatic mutation p.S54L in the PRKACB gene, encoding the catalytic subunit β (Cβ) of PKA, in a CPA from a patient with severe Cushing syndrome. Bioluminescence resonance energy transfer and surface plasmon resonance assays revealed that the mutation hampers formation of type I holoenzymes and that these holoenzymes were highly sensitive to cAMP. PKA activity, measured both in cell lysates and with recombinant proteins, based on phosphorylation of a synthetic substrate, was higher under basal conditions for the mutant enzyme compared with the WT, while maximal activity was lower. These data suggest that at baseline the PRKACB p.S54L mutant drove the adenoma cells to higher cAMP signaling activity, probably contributing to their autonomous growth. Although the role of PRKACB in tumorigenesis has been suggested, we demonstrated for the first time to our knowledge that a PRKACB mutation can lead to an adrenal tumor. Moreover, this observation describes another mechanism of PKA pathway activation in CPAs and highlights the particular role of residue Ser54 for the function of PKA.

Authors

Stéphanie Espiard, Matthias J. Knape, Kerstin Bathon, Guillaume Assié, Marthe Rizk-Rabin, Simon Faillot, Windy Luscap-Rondof, Daniel Abid, Laurence Guignat, Davide Calebiro, Friedrich W. Herberg, Constantine A. Stratakis, Jérôme Bertherat

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 393 134
PDF 78 21
Figure 308 3
Table 93 0
Supplemental data 63 14
Citation downloads 70 0
Totals 1,005 172
Total Views 1,177
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts