Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Clonal relationships of CSF B cells in treatment-naive multiple sclerosis patients
Erica L. Eggers, … , Stephen L. Hauser, H.-Christian von Büdingen
Erica L. Eggers, … , Stephen L. Hauser, H.-Christian von Büdingen
Published November 16, 2017
Citation Information: JCI Insight. 2017;2(22):e92724. https://doi.org/10.1172/jci.insight.92724.
View: Text | PDF
Research Article Neuroscience

Clonal relationships of CSF B cells in treatment-naive multiple sclerosis patients

  • Text
  • PDF
Abstract

A role of B cells in multiple sclerosis (MS) is well established, but there is limited understanding of their involvement during active disease. Here, we examined cerebrospinal fluid (CSF) and peripheral blood (PB) B cells in treatment-naive patients with MS or high-risk clinically isolated syndrome. Using flow cytometry, we found increased CSF lymphocytes with a disproportionate increase of B cells compared with T cells in patients with gadolinium-enhancing (Gd+) lesions on brain MRI. Ig gene heavy chain variable region (Ig-VH) repertoire sequencing of CSF and PB B cells revealed clonal relationships between intrathecal and peripheral B cell populations, which could be consistent with migration of B cells to and activation in the CNS in active MS. In addition, we found evidence for bystander immigration of B cells from the periphery, which could be supported by a CXCL13 gradient between CSF and blood. Understanding what triggers B cells to migrate and home to the CNS may ultimately aid in the rational selection of therapeutic strategies to limit progression in MS.

Authors

Erica L. Eggers, Brady A. Michel, Hao Wu, Sheng-zhi Wang, Carolyn J. Bevan, Aya Abounasr, Natalie S. Pierson, Antje Bischof, Max Kazer, Elizabeth Leitner, Ariele L. Greenfield, Stanislas Demuth, Michael R. Wilson, Roland G. Henry, Bruce A.C. Cree, Stephen L. Hauser, H.-Christian von Büdingen

×

Full Text PDF | Download (2.08 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts