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A role of B cells in multiple sclerosis (MS) is well established, but there is limited understanding of
their involvement during active disease. Here, we examined cerebrospinal fluid (CSF) and peripheral
blood (PB) B cells in treatment-naive patients with MS or high-risk clinically isolated syndrome.
Using flow cytometry, we found increased CSF lymphocytes with a disproportionate increase of B
cells compared with T cells in patients with gadolinium-enhancing (Gd*) lesions on brain MRI. Ig
gene heavy chain variable region (Ig-VH) repertoire sequencing of CSF and PB B cells revealed clonal
relationships between intrathecal and peripheral B cell populations, which could be consistent with
migration of B cells to and activation in the CNS in active MS. In addition, we found evidence for
bystander immigration of B cells from the periphery, which could be supported by a CXCL13 gradient
between CSF and blood. Understanding what triggers B cells to migrate and home to the CNS may
ultimately aid in the rational selection of therapeutic strategies to limit progression in MS.

Introduction
The effectiveness of B cell-depleting antibodies as treatment in multiple sclerosis (MS) suggests that B cells
play a central role in CNS myelin-directed autoimmunity (1-6). B cell repertoires in the periphery and CNS
are closely linked in MS and other CNS autoimmune diseases, such as neuromyelitis optica, suggesting that
disease-relevant B cell networks interact on both sides of the blood-brain barrier (7-11). Multiple features of
intrathecal B cells, such as the presence of memory B cells, short-lived plasmablasts (12), and plasmablasts
and plasma cells sharing the same B cell receptors (13), and the accumulation of somatic hypermutations
(SHM) in Ig genes, support the participation of B cells in the CNS in antigen-directed immunity. Compared
with peripheral blood (PB) or immune organs, B cell receptor diversity in cerebrospinal fluid (CSF) is gener-
ally limited, suggesting selective recruitment and/or survival of B cell populations in the MS CNS (8, 10, 14).

Clonal IgG (oligoclonal bands [OCBs)) is present in the CSF of over 95% of patients with MS. The
presence and long-term persistence of OCBs indicate ongoing local production of IgG in the CNS, either
by resident long-lived plasma cells or by antibody-secreting cells that continuously mature from an existing
pool of memory B cells. Anti-CD20 therapy with rituximab reduces B cell numbers in CSF without elim-
inating OCBs (15); thus, intrathecal production of clonal IgG is largely a function of CD20-, long-lived
plasma cells in CNS survival niches. Inflammatory infiltrates with lymphoid follicle-like structures are
present in the meninges of patients with secondary progressive MS and are quite likely also present during
the earlier relapsing phase of MS (16-18); such ectopic lymphoid tissues could support germinal center
(GC) activity (19), plasma cell maturation, and survival. Interestingly, however, natalizumab, an anti-VLA4
antibody that limits lymphocyte transmigration across the blood-brain barrier and effectively decreases MS
disease activity reduces intrathecal IgG production at least in some patients (20-22), which may suggest
that OCB production also partially relies on peripheral stimuli.

Here, we studied the composition of the intrathecal and PB B cell compartments and performed Ig
heavy chain variable region (Ig-VH) immune repertoire sequencing (Ig-RepSeq) to understand clonal rela-
tionships between B cell subsets on both sides of the blood-brain barrier in untreated MS patients.
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Table 1. Patient characteristics

Patient ID

49713a*
51013a%
51113a%#
513143"
51514a
518143°®
51914a
52914a
53814a*
56014a
56114a
5641438
56514a®
56914a"8
5711438
57314a*
5741438
5751438
577143*8
58415a
58515a
58915a
59015a
59215a
60615a
60815a
61215a
61515a
62115a
642153°
65415a
65715a
65815a
66915a
68116a
69716a
70416a
70616a
72516a

Brain MRI
(Gd"*)

Gd-
Gd-
Gd-
Gd*
Gd*
Gd*
Gd-
Gd*
Gd-
Gd-
Gd*
Gd*
Gd*
Gd*
Gd*
Gd-
Gd*
Gd*
Gd*
Gd*
Gd*
Gd*
Gd-
Gd-
Gd*
Gd-
Gd-
Gd-
Gd-
Gd-
Gd*
Gd*
Gd-
Gd*
Gd*
Gd-
Gd*
Gd*
Gd-

Diagnosis Sex AgeatLP(yr)  EDSS CSF WBC ocB 1gG index CSF IgG Same day
MRI?
CIs F 24 1.5 0 n.d. 0.5 2 Yes
RRMS M 35 1 0 Pos 1.3 2.5 Yes
CIs F 37 2 1 Pos 0.8 6.3 Yes
RRMS F 38 0 Pos 0.9 5.6 Yes
RRMS F 36 2.5 0 Pos 1.23 2.8 Yes
RRMS F 24 3.5 1 Pos 1.1 4.9 Yes
RRMS 7 36 0 1 Neg 0.8 41 Yes
RRMS F 42 3 1 Pos n.d. n.d. Yes
RRMS F 34 0 1 Pos 0.76 2.2 Yes
RRMS F 30 1 1 Pos 0.6 21 Yes
RRMS M 40 2 1 Pos 0.59 2.2 Yes
RRMS F 32 3.5 2 Pos 1.2 8.6 Yes
RRMS 7 29 6 B Pos 1.27 8.3 Yes
RRMS F 39 3.5 3 Pos 17 4.8 Yes
RRMS F 41 2 3 Pos 0.67 2.7 Yes
RRMS M 49 1 1 Pos 1.22 5.5 Yes
CIs F 32 2 3 Pos 1.39 4.6 Yes
RRMS F 26 1.5 4 Pos 0.83 2.5 -1day
RRMS F 31 3.5 4 Pos 21 84 “1day
RRMS F 47 3 4 Pos 0.8 4.4 -1day
RRMS F 39 2 4 Pos 11 4.8 -1day
RRMS M 28 0 4 Pos 1 2.8 Yes
RRMS F 48 1 1 n.d. 0.3 2.6 Yes
RRMS F 44 2 2 Pos 0.6 2.6 Yes
RRMS M 11 n.d. 8 Pos 0.62 4.9 Yes
cIs F 24 0 2 Pos 1.6 8.5 Yes
CIs F 27 2 2 Pos 14 3.3 Yes
CIs F 38 0 4 Pos 0.9 6.3 Yes
CIs F 44 2 6 Pos 0.6 1.3 Yes
CIs M 37 2 6 1° 0.64 13 Yes
RRMS M 32 5 9 Pos 1.1 4.1 -1day
RRMS M 23 1.5 9 Pos 1.1 73 Yes
Cls F 24 2 6 Pos 17 6.4 -1day
RRMS M 32 1 12 Pos 0.9 41 Yes
RRMS F 39 n.d. 12 Neg 0.5 4.9 Yes
RRMS F 36 n.d. 7 Neg 0.51 1.6 -1day
RRMS F 36 1.5 14 Pos 0.5 1.9 Yes
RRMS F 43 4 17 Pos 1.5 4.9 Yes
RRMS M 30 4.5 8 Pos 0.6 1.9 Yes

Shown are subject 1D, diagnosis at time of study enrollment, sex, age, EDSS, OCB status, IgG index, CSF 1gG levels (mg/dl), time point of MRI in relation to
the LP, and whether the brain MRI showed Gd enhancement. Multiparameter flow cytometry was performed on each patient’s PBMC and CSF lymphocytes.
Footnotes refer to other experiments performed: Acytokine/chemokine ELISA and Blg-RepSeq. “‘One distinct band that was only present in CSF.
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Results

Clinical findings. Characteristics of patients in our study are summarized in Table 1. The expanded dis-
ability status score (EDSS) was significantly higher in patients with Gd-enhancing (Gd*) lesions on brain
MRI (2.6 + 0.3 SD) compared with patients without Gd enhancement (Gd") (1.4 £ 0.3 SD; P = 0.009)
(Table 2). Age, OCB, and IgG index were not different between Gd* and Gd- patient groups; CSF-
IgG levels were marginally higher in Gd* patients versus Gd- patients. Among Gd~ patients, there were
significantly more patients with a clinically isolated syndrome (CIS) versus a relapsing-remitting MS
(RRMS) diagnosis (Table 2); however, virtually all patients with CIS in this study had OCB in their CSF,
placing them in a high-risk category for clinically definite MS (23).
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Table 2. Comparison of patient characteristics between Gd* and Gd- patients

Gd* Gd- P
Age (yr) 35+6.5 351+8 0.96
Sex, M/F 6/16 4/13 1.0
EDSS 26+15 14+1.2 0.0095
WBC 54+48 2927 0.065
CSF-IgG 47+2.0 36+22 0.093
IgG index 11+04 09+04 0.19
0CB*/0CB- 211 131 1.0
CIS/RRMS 1/21 8/9 0.005

Shown are mean values + SD or number of subjects meeting the indicated criteria. For
linear measures and for group comparisons, a t test and a Fisher’s exact test were used
to determine level of significance, respectively (P).
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B cells are disproportionally increased in CSF compared
with T cells in active MS. We used multiparameter flow
cytometry to characterize B and/or T lymphocytes in
CSF. As previously shown (24), the percentage of B
cells in CSF is significantly lower than that of T cells.
Comparing Gd* and Gd~ patients, we found signifi-
cantly increased proportions of CSF B cells (Figure
1A) but not T cells (Figure 1B). In keeping with an
increase of absolute numbers of CSF lymphocytes
during an inflammatory state, numbers of B and T
cells per ml were increased in CSF of Gd* patients ver-
sus Gd~ patients (Figure 1, C and D). To understand
whether B and T cells were equally increased in Gd*
CSF, we calculated the B/T cell ratio (Figure 1E) and
found a disproportionate increase in B cell numbers in
patients with Gd* MRI.

CD27* B cells dominate the CSF B cell compartment in MS. Overall, we found that CD19* B cell subsets
defined by CD27 and IgD expression differed substantially between CSF and PB irrespective of disease

activity status (representative flow cytometry plots are shown in Figure 2, A and B), providing indepen-

dent validation of previously published data (25). The proportion of CD19* B cells among lymphocytes
was significantly lower in CSF than in PB (Figure 2C). The proportion of CD19*CD27 IgD* naive B
cells was lower in CSF (Figure 2D), whereas CD27*IgD~ Ig class-switched (SM) B cells and CD27"
plasmablasts/plasma cells (PC, CD27") were significantly increased (Figure 2, G and H); the latter were
mainly CD38" and CD138* (data not shown). CD27*IgD* unswitched-memory (USM) and CD27 IgD-
“double-negative” (DN) B cells were slightly increased among CD19* B cells in CSF (Figure 2, E and F).
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Figure 2. B cell subsets in CSF and PB. Shown are representative FACS plots of peripheral blood (PB) (A) and cerebrospinal fluid (CSF) (B) CD19* B cell

subsets (patient 56414), as defined

based on the expression of IgD and CD27. The graphs in C-H summarize data from all patients, i.e., both Gd* and Gd-

patients combined, to provide an overall picture of B cell subset distribution in both compartments. CD19* B cells are approximately 3-fold lower in CSF

(C, 6.7% * 2.6% in PB versus 2.25%
their B cell receptors (F-H). Among
7.6% in CSF); USM are slightly incre

+1.4% in CSF). The CSF contains B cell subpopulations predominantly that have undergone somatic rearrangement of
CD19* B cells, in CSF compared with PB, naive are approximately 5-fold lower (D, 56.8% + 14.2% in PB versus 11.5% +
ased (E, 19.1% + 11.7% in PB versus 22.8% * 10.4% in CSF); DN are increased (F, 4.0% * 2.5% in PB versus 7.7% + 7.3% in

CSF); and SM are increased 2.5-fold (G, 18% + 7.5% in PB versus 45.9% + 11.8% in CSF). Most significantly, the percentage of CD27" B cells was increased

34-fold in CSF (H, 0.2% + 0.2% in P

B versus 7.6% + 7.9% in CSF). Refer to Supplemental Table 1 for more information on the patients analyzed. Data are

shown as scatter plots with mean + 95% Cl. Comparisons were made using paired t tests; ***P < 0.01, ****P < 0.0001.
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In accordance with a previous report by others (12), our findings demonstrate that the CSF B cell pool
is composed primarily of memory and differentiated B cells capable of providing antigen-specific anti-
gen-presenting cell-mediated (APC-mediated) and antibody-mediated immune functionality.

PCs are increased in CSF of patients with Gd* MRI. Given the overall increased numbers of memory and
CD27" B cells in MS CSF (Figure 2) and a disproportionate increase in B cells in Gd* CSF (Figure 1), we
sought to determine whether there is a balanced increase in all B cell subsets during active MS evidenced by
a Gd* MRI. The absolute number of cells per ml was only significantly increased in SM and CD27" subsets
(Figure 3, D and E) , and not significantly higher in naive, USM or double negative subsets (Figure 3, A—C).
When further examining the averages for each subset in Gd* CSF versus Gd- CSF, we found a greater,
approximately 8-fold, relative increase of CD27" B cells compared with an approximately 3-fold increase
of SM B cells (Figure 3F). In PB, we found B cell subsets more similarly distributed between Gd* and Gd-
patients, with significant differences only in CD27 IgD- DN B cells (Supplemental Figure 1; supplemental
material available online with this article; https://doi.org/10.1172/jci.insight.92724DS1).

Clonal relationships between CSF and PB suggest influx of functionally diverse B cell populations. The
finding that increased CSF B cells were linked to the presence of Gd* lesions on brain MRI sug-
gested their association with disease activity in MS and raised the question whether there are clonal
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Figure 3. The abundance of antigen-induced B

A CD277gD" (Naive) B CD27*IgD* (Unswitched memory)  cels is increased in Gd* CSF. In CSF of patients
w 60- ns w 2501 ns with Gd-enhancing lesions on brain MRI, B cell
1 1
a @ 200 subsets resulting from antigen-driven stimulation
E 40 o T 150 L are increased in numbers (D and E). Other B cell
5 o, 5 L4 subpopulations appeared increased as well but not
3‘, 204 ° - 100 in a significant fashion (A-C). (F) The fold difference
° _'E'_ T 50 e o of the mean number of each B cell subset between
§ | N e S o] SEEP ol G andGd CSF showing the grestest increase of
T T T T CD27" B cells. Shown are scatter plots with each
Gd+ Gd- Gd+ Gd- point representing findings from a single patient,
o . — . and all data are shown as mean + 95% Cl, except for
c CD271gD" (Double negative) D CD27"IgD" (Switched memory) those in E, where the ratio of means is shown and
w w 2501 ** therefore no error bars can be calculated. Refer to
1
8 8 200 Supplemental Table 1 for more information on the
T T 150 ¢ patients analyzed in A-E. Comparisons were made
5 5 ¢ using an unpaired t test; *P < 0.05, **P < 0.01.
o 2 100 oo
® » Se o
3 T 50 o
* ol Seageee® RTS.....
Gd+ Gd-
E CD27"IgD" (Plasma cells) F Ratio Gd+/Gd-
* = 101
w 100] —_— g
8 [
© g ® © 0
E 40 gg 6
[ om
o > i
2 200 of ° °® < 8 “©e (] (]
3 i 7 ° o
** 0 gg.......... CRTERRERERRED 10} N
Gd+ Gd- o & oc\ ..040 0«3 Q}\%
AR R S P
[ & & & Lo
6«“ < 6& £
@ N & Q®
Y o\) Y
4‘\ 0 \s\
& )
N

insight.jci.org

https://doi.org/10.1172/jci.insight.92724

relationships between CSF B cell subsets and their PB counterparts. To address this question, we
performed Ig-RepSeq on CSF and PB samples (Table 1). PB subsets (naive, USM, DN, SM, CD27")
were sequenced from 11 patients. Matched bulk-sorted CSF B cells (i.e., all subsets sorted together
in the same tube) were sequenced from 3 of these 11 patients (51113a, 51314a, and 51814a), CSF B
cells sorted as 4 subsets (naive, USM, DN, SM/CD27" combined) from 2 of 11 patients (56414a and
56514a), and CSF B cell subsets sorted as 5 separate subsets (naive, USM, DN, SM, CD27") from 6
of 11 patients (56914a, 57114a, 57414a, 57514a, 57714a, and 64215a). Using IGHV gene-specific for-
ward primers and IgM or IgG constant region reverse primers (Table 3), extensive IgM/G-VH cDNA
libraries were generated and then sequenced using an IonTorrent PGM sequencer (Supplemental Table
2). In total, we generated and analyzed nearly 1.3 x 107 Ig-VH sequences. In general, next-generation
sequencing technologies are error-prone (26), which, in the case of Ig-VH repertoire sequencing, can
lead to overestimation of SHM and Ig repertoire diversity. We applied our bioinformatics pipeline to
first discard nonproductive (i.e., incorrect reading frame) sequencing reads. In a next step, we deter-
mined IGHV/IGHJ usage, H-CDR3 amino acid sequence, and the number of mutations away from
the closest IGHV germline segment (SHM) for each sequence; this information, along with the B cell
subset origin (i.e., naive, SM, USM, DN, CD27") and isotype (i.e., IgG, IgM), was used to annotate
each productive Ig-VH read. SHM profiles generated for each PB subset largely replicated what would
be expected biologically (Figure 4), i.e., low SHM counts in naive B cell IgM-VH and increasing SHM
in more mature B cells, with the highest number of SHMs being present in IgG-expressing CD27" B
cells (Figure 4A). USM B cells had also accumulated some level of SHM, despite not having under-
gone class-switch recombination (Figure 4B). SHM profiles of CSF B cell subsets were reflective of the
limited diversity found in this compartment (Figure 4, C and D).
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Table 3. Primer sequences used for Ig-RepSeq library generation

General design

General design

insight.jci.org

VH1
VH2
VH3
VH4
VH5
VH6
VH7

1gG
IgM

Forward primers
5'-trP1 adaptor-IGHV1-7-3’
5'-CCTCTCTATGGGCAGTCGGTGAT-GAARRTYTCCTGCAAGGYWTC-3'
5'-CCTCTCTATGGGCAGTCGGTGAT-CACRCTGACCTGCACCKTCTC-3'
5'-CCTCTCTATGGGCAGTCGGTGAT-KARACTCTCCTGTRCAGCCTB-3'
5’-CCTCTCTATGGGCAGTCGGTGAT-GTCCCTCACCTGCRCTGTCTM-3'
5'-CCTCTCTATGGGCAGTCGGTGAT-CGARGATCTCCTGTAAGGGTTC-3'
5'-CCTCTCTATGGGCAGTCGGTGAT-CTCACTCACCTGTGCCATCTC-3!
5'-CCTCTCTATGGGCAGTCGGTGAT-GAAGGTTTCCTGCAAGGCTTC-3'
Reverse primers
5’-adaptor-barcode+GAT key-1gG/M gene-specific sequence-3'
5’-CCATCTCATCCCTGCGTGTCTCCGACTCAG-barcode-GAT-GGGAACGACSGATGGGCCCTTGGTGG-3!
5'-CCATCTCATCCCTGCGTGTCTCCGACTCAG-barcode-GAT-GGAGTCGGGAAGGAAGTCCTGTGCGAG-3'

To identify clonal overlap between CSF and PB B cells based on Ig-RepSeq data, we used a previous-
ly published distance-metric clustering approach (Hamming distance; see Methods), placing all Ig-VH
with related H-CDR3 and identical IGHV and IGHJ usage in clusters of clonally related Ig-VH (Ig-VH
clusters). This approach is insensitive to possible sequencing errors in Ig-VH reads, as clonally relat-
ed Ig-VH are combined in their appropriate cluster irrespective of whether SHM or sequencing errors
altered the Ig-VH. Clonal relationships were identified between different CSF and PB B cell subsets in
each patient. Figure 5 shows overviews of clonal relationships between CSF and PB B cell subsets for all
patients from which Ig-RepSeq data was available (Figure 5A). Supplemental Table 3 lists the frequen-
cies of clonal connections among each B cell subpopulation shown in Figure 4. Supplemental Table 4
lists the characteristics of CSF Ig-VH clusters, whether they were exclusively found in CSF, or to which
PB B cell subsets clonal relationships were identified. IGHV usage distribution per analyzed patient and
sample/subset is shown in Supplemental Figure 2.

Increased CSF B cells were correlated with overall number of CSF Ig-VH clusters (R? = 0.633, P =
0.0034) (Figure 5B) and with CSF “restricted” Ig-VH clusters (i.e., clusters for which no related sequences
were found in the matched PB sample) (R? = 0.6675, P = 0.021) (Figure 5C) and partially correlated with
the proportion of PB Ig-VH clusters with clonal relationships to the CSF (R? = 0.4044, P = 0.0355) (Figure
5D). These findings suggest that influx and intrathecal expansion of B cells occur during active MS.

We found clonally related Ig-VH expressed by CSF CD27" and peripheral B cell subsets in all patients
from which CD27" B cells could be sorted (all were Gd*) (Figure 6), suggesting that peripherally anti-
gen-stimulated B cells may have migrated to the CSF compartment where they became activated to further
mature into antibody-secreting CD27" B cells. In addition, we identified clusters of related Ig-VH that
were exclusively expressed by CSF B cells, including some found in CSF SM and CD27" B cells, which
may point toward intrathecal activation without a peripheral contribution (Figure 6). In 6 Gd* patients, we
identified Ig-VH clusters containing IgM-VH and IgG-VH derived from CSF B cells, possibly indicating
intrathecal Ig class-switch recombination (Supplemental Table 3).

Interestingly, we also found substantial clonal overlap between CSF USM B cells and PB USM, SM,
and DN B cells but only a limited clonal relatedness of CSF USM to CSF CD27" or SM B cells (Figure
6); SHM profiles of USM B cells were most closely related to SHM profiles of IgM-expressing PC and
SM B cells (Figure 4B). We were able to sort naive B cells from CSF and obtain IgM-VH sequences from
4 patients; as was the case for USM B cells, clusters containing CSF naive B cells were almost exclusive-
ly clonally connected to the periphery and did not include post-GC CSF B cells, potentially suggesting
bystander influx without further intrathecal stimulation (Figure 6 and Supplemental Figure 3). The pres-
ence of related Ig-VH expressed by naive B cells in CSF and by peripheral B cells also supports homeostatic
proliferation (i.e., nonantigen-driven clonal expansion) of naive B cells.

B cell CXCR5 and CSF CXCL13 as possible drivers of B cell migration to the CNS during active MS. Finally, we
explored the possibility that CXCRS5 on B cells and CXCL13 in CSF might be involved in B cell recruitment
to CSF during active MS by measuring CXCL13 levels in CSF obtained usually on the same day of the
brain MRI. In alignment with the finding that increased B cell migration to the CSF occurs in active MS, we

https://doi.org/10.1172/jci.insight.92724 6
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Each row represents an individual B cell sample, as indicated by sample names containing patient ID, B cell subset, number of cells analyzed, and Ig iso-
type separated by “_". CSF B cells subsets are indicated by “CSF” before the subset designation and blue type. N, naive B cells; USM, unswitched-memory
B cells; DN, double-negative B cells; SM, switched-memory B cells; PC, plasma cells/plasmablasts.
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found levels of CXCL13 in CSF of Gd* patients (n = 5) that were similar to plasma CXCL13 levels, while no
CXCL13 was detectable in Gd™ CSF (n = 5) using a commercial ELISA assay (Figure 7A). The receptor for
CXCL13, i.e., CXCR5, was identified on most B cells (Figure 7B); however, significantly fewer CSF and PB
CD27" B cells expressed CXCRS5. To assess whether the presence of CSF CXCL13 in Gd* CSF was merely
due to increased passive exchange of soluble factors from the periphery across a compromised blood-brain
barrier, we also measured other chemokines and cytokines of similar or higher molecular weight as CXCL13
(10.7 kDa), i.e., CXCL12 (8.5 kDa), BAFF (31.2 kDa), and APRIL (27.4 kDa) (Figure 7, C-E). We found
that CXCL12 and BAFF levels were lower in CSF than PB independent of Gd enhancement, while APRIL
may even be slightly, though not statistically significantly, increased in Gd- CSF. Overall, these data suggest
that CXCL13 in Gd* CSF is produced locally in the CSF or CNS compartments and may be involved in the
recruitment of diverse populations of CXCRS5-expressing B cells during active MS, except for CD27" B cells.

Discussion

We performed comprehensive analyses of CSF and peripheral B cells in patients with a new diagnosis of
RRMS or high-risk CIS who had never been treated with disease-modifying therapy for MS. Most patients
(34 of 39) had OCBs in their CSF, suggesting a preestablished intrathecal plasma cell repertoire as potential
evidence for immune activation and CNS infiltration that may have occurred prior to CSF sampling.

With regards to the CSF lymphocyte composition, we confirmed that T lymphocytes are much more prev-
alent than B cells in CSF of MS patients, that absolute numbers of both B and T cells are increased in active
MS (27), and that the CSF is enriched with memory B cells (28). In patients with Gd* lesions on brain MRI, we
found a disproportionate increase in B cell numbers compared with T cells, suggesting that B cell immigration
and/or activation is associated with active MS. We found increased CD27" B cells in CSF, confirming earlier
reports that intrathecal plasma cells are associated with active CNS inflammation in MS (12, 29) and suggesting
antigen-driven B cell activation. This is interesting considering that plasma cells are antibody-secreting cells and
that the pathological involvement of antibodies in MS remains poorly understood (30). Antibody-secreting cells
are clonally expanded in the CSF where they participate in the production of clonal IgG (i.e., OCBs) (7, 31, 32);
their presence in the CSFs studied here and their apparent association with MS disease activity further support
antigen-driven and possibly antibody-mediated mechanisms as playing a key role in MS immune pathology.

We previously showed that clonally related B cells are present in CSF and PB of MS patients (7, 8,
10). Here, we were interested in the clonal relationships between B cell subsets in untreated MS CSF and
PB. In B cells, random somatic recombination of Ig germline genes IGHV, IGHD, IGHJ), SHM, and Ig
class-switch recombination shape the highly diverse B cell repertoire and generate readily identifiable and
specific molecular signatures that can be exploited for the identification of clonally related B cells in spa-
tially separated compartments and/or different B cell subsets. We applied flow cytometry in combination
with Ig-RepSeq to identify clonally related B cells in CSF or PB. Our results suggest that during episodes of
disease activity, diverse populations migrate to and/or are stimulated within the CNS/CSF compartment.

Unresolved questions are how MS relapses are triggered and whether antigen-specific or nonspecific restim-
ulation is required for relapsing disease activity. Our finding of a preexisting network of potentially disease-driv-
ing immune cells on both sides of the blood-brain barrier could explain how relapsing immune activity is facil-
itated, such as when patients experience relapses during systemic infection (33, 34). Indeed, we found clonally
related CD27" PCs in PB and CSF that were also related to Ig class-switched-memory B cells in the same
compartments. Given that CD27" PCs are likely restricted to their compartment (as evidenced by their low
CXCRS5 expression), and the persistence of memory B cells in MS CSF and CNS in general, parallel maturation
of preexisting SM B cells on both sides of the blood-brain barrier may have occurred following a peripheral
immune activating event. The presence of clonal relationships between memory B cells and CD27" plasma cells
in the CSF and CSF Ig-VH clusters containing related IgM-VH and IgG-VH also support local B cell activation
and subsequent maturation and class-switch recombination.

Clearly, the MS disease process is complex, with multiple mechanisms contributing to relapsing activ-
ity. The efficacy of natalizumab in suppressing MS relapses supports common thinking that peripheral
activation, transmigration, and intrathecal maturation of SM B cells to CD27" PCs also contributes to MS
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CSF or PB subsets (patient 56414). For comprehensive information on clonal relationships between CSF B cells and other subsets see Supplemental
Table 4. n.a., not available, i.e., CSF subset not obtained flow cytometry sorting; N, naive B cells; USM, unswitched-memory B cells; DN, double-nega-
tive B cells; SM, switched-memory B cells; PC, plasma cells/plasmablasts.

disease activity (35). Our finding of a positive correlation between bicompartmental B cell clusters and the
proportion of CSF CD19* B cells suggests that peripherally activated B cells may be directly contributing to
intrathecal inflammation and B cell activation in MS. Together with previous evidence of intrathecal IgM-
and IgG-VH SHM (10, 36-38), our findings add to a model (Figure 8) of B cell activation that may origi-
nate in the periphery, continue in the CNS compartment, partially involve preexisting intrathecal memory
B cells, and may also attract antigen nonspecific subsets to the CNS compartment.

Interestingly, while we did find naive CSF B cells with clonally related counterparts in the periphery,
naive B cells do not seem to become stimulated intrathecally to mature to memory B cells. Thus, GC func-
tionality may only be partially represented intrathecally, providing support for class-switch recombination,
SHM (19), and plasma cell maturation but not for further differentiation or survival of naive B cells. The
latter point is also supported by the fact that, contrary to PB, naive B cells are among the least abundant B
cells in CSF. Ig non-class-switched IgD-expressing memory B cells (USM) have been described in MS CSF
(25). Here, we found that CSF USM B cells are clonally related to a variety of peripheral B cell subsets,
including IgG-expressing SM and CD27" B cells. CD19*CD27*IgD* USM B cells carry features of post-
GC B cells, such as SHM in their B cell receptor, and can reenter the GC or rapidly differentiate into anti-
body-producing plasma cells (39), findings which are supported by our finding of IgG-expressing and/or
IgD- B cells in CSF or periphery that are clonally related to USM B cells. The CD27*IgD* B cell population
may resemble splenic marginal zone B cells or B1 cells and provide a primary response against encapsulat-
ed bacteria (40) by generating diverse low-affinity IgM. Additional work will be necessary to understand
the involvement of IgD-expressing memory B cell subsets in MS.

We also studied CXCL13 and CXCRS5 in a small subcohort of patients and found detectable levels
of CXCL13 only in CSF of patients with Gd* lesions, which is consistent with prior reports of increased
CXCL13 during MS relapses (41). Thus, a B cell-attracting CSF environment appears to be generated
during phases of disease activity, and an inverse CXCL13 gradient (i.e., higher in plasma, absent in CSF),
as observed in Gd patients, might promote B cell egress from the CNS during periods of remission. CSF
CXCL13 may derive from actively demyelinating lesions (42) or from meningeal ectopic lymphoid sites
(43). Only a minority of CD27" B cells in PB and CSF expressed CXCRS5, the receptor for CXCL13,
while the majority of other CSF and PB B cell subsets were CXCR5*. Thus, the CXCL13/CXCRS5 inter-
action may be generally involved in B cell recruitment to the CNS; however, it is specifically not involved
in the recruitment of CD27" B cells. Accordingly, CSF PCs more likely matured within the CNS/CSF
compartment from plasma cell progenitors that were either present in this compartment or had newly
entered the CNS during the phase of disease activity. We found the highest levels of CXCRS5 on naive
and USM B cells. Interestingly, we found USM and naive B cells in CSF with clonally related coun-
terparts in the periphery and, particularly in the case of naive B cells, a striking absence of intra-CSF
clonal relatedness to post-GC B cells. This observation could reflect nonspecific bystander recruitment
of CXCRS5-expressing B cells along a CXCL13 gradient and supports the presence of homeostatically
proliferated naive B cells as previously described (44).

In summary, our data in treatment-naive MS patients suggest substantial influx and activation of
diverse B cell populations during episodes of MS disease activity that may feed into ectopic lymphoid
compartments, as described in patients with progressive MS (16, 18). The presence of OCB and CSF
B cell repertoires, which likely existed prior to the disease activity period observed in our study, sug-
gests long-term survival of B cells in the CNS compartment, which may facilitate peripherally triggered
relapsing activity from within. Following completion of phase III trials (5, 6), anti-CD20 therapy has
now been approved for the treatment of relapsing and progressive MS in the US. However, important
questions remain regarding CD20-targeted B cell-depleting therapy: when to start treatment to not only
limit disease activity but to most effectively delay or even prevent secondary progression? Should anti-
CD20 therapy be used as second-line therapy in patients with ongoing disease activity under another dis-
ease-modifying therapy, or should it be used as first-line therapy? Once established in the intrathecal (i.e.,
leptomeningeal or CNS parenchymal), compartment B cells may be less effectively targeted by peripher-
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ally acting B cell-depleting therapies (45). While anti-CD20 antibodies appear to be moderately effective
in progressive MS (6, 46), onset of secondary progression may not be prevented if treatment is started
too late (47). Therefore, it may be desirable to limit B cell influx into the CNS as early and effectively as
possible to most successfully limit immune mechanisms that support MS progression.

Methods
Patients and samples. CSF and PB were sampled from a total of 39 patients recruited at the UCSF MS Cen-
ter. All patients were treatment naive (i.e., no glucocorticoids or disease-modifying MS therapy at any time
prior to lumbar puncture [LP] and MRI), sought medical care for a possible new diagnosis of MS, and met
clinical and radiographic diagnostic criteria for RRMS or CIS. PB was obtained by venipuncture. CSF was
obtained by standard LP; the first 1-3 ml CSF were discarded and then CSF was obtained for clinical pur-
poses. On average, 11.2 ml (+£3.35 ml, SD) of CSF were obtained for research studies at the end of the LP
procedure. MRI imaging of the brain and spinal cord with and without Gd was obtained for each patient
within 1 day of their LP; lesion counts (T1 Gd* or T2) or volumes were not determined for this study.
Flow cytometry analysis and sorting. Peripheral mononuclear blood cells (PBMCs) were isolated using a Ficoll
gradient, red blood cell lysis, and washing with phosphate-buffered saline (PBS) and 1% bovine serum albumin.
PBMCs (5 x 107) and CSF cell pellets were blocked with FcR Block (Miltenyi Biotec) and incubated in the
dark on ice for 20 minutes with the following antibodies: for PBMCs, we used IgD Brilliant Violet 421 (Bioleg-
end 11-26¢.2a), CD19 FITC (Biolegend HIB19), CD5 PerCP-eFluor710 (eBioscience YKIX322.3), CD38 PE
(eBioscience 90), and CD27 APC (eBioscience O323) and for CSF, we used IgD Brilliant Violet 421 (Bioleg-
end 11-26¢.2a), CD20 FITC (Beckman Coulter BO9E9), CD19 PC5.5 (Beckman Coulter J3-119), and CD3 PE
(Beckman Coulter UCHTY1). For the CXCR5-specific panels (PBMC and CSF), we used IgD Brilliant Violet 421
(Biolegend 11-26¢.2a), CXCRS5 FITC (eBioscience MU5SUBEE), CD38 PerCPCy5.5 (BD Biosciences HIT2),
CD3 PC7 (Beckman Coulter UCHT1), CD138 PE (Miltenyi Biotec B-B4), CD27 APC (eBioscience 0323),
and CD19 APC-Alexa Fluor 750 (Beckman Coulter J3-119). Cells were washed and resuspended in PBS con-
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This immune activation involves B and T cells, as supported by our flow cytometry findings and those of others (24) (Figures 1-3), and leads to B cell acti-
vation, modification of the B cell receptor (somatic hypermutation [SHM]; Ig-class switch recombination [CSR]) and B cell maturation (C). B cell influx and
intrathecal B cell expansion are supported by Ig-RepSeq (Figures 5 and 6). These immune mechanisms support MS disease activity (evidenced by Gd* MRI

lesions; example from patient 57514) and lead to increased production of CXCL13 (D), which, in turn, also attracts CD27- B cells to the CNS/CSF compart-
ment (E). These CD27- B cells may not have been involved in the initial peripheral immune triggering event; rather, their migration to the CNS could be a

nonspecific event. Activated CD27* B cells, once in the CNS, may further mature to antibody-secreting plasmablasts/plasma cells and may home to ectopic

lymphoid sites (F). We found no evidence for CD27- IgD* B cells maturing to antigen-specific CD27* B cell subset; the fate of naive B cells in CSF remains

unknown (G). It is important to note that several steps described in this model remain hypothetical and subject of future research.

taining 1% fetal bovine serum (Thermo Fisher Scientific), 1 mM EDTA, and 25 mM HEPES and collected on
a MoFlo Astrios (Beckman Coulter). B cell subsets were gated out of CD19" and defined as naive IgD*CD27-,
USM IgD*CD27*, DN IgDCD27, or SM IgD-CD27*. CD27" PCs (CD27") were sorted out of the PB as
IgD-CD27"CD38" and out of the CSF as IgDCD27", B cells were sorted directly into RLT Buffer (Qiagen)
with 1% B-mercaptoethanol for cell lysis and RNA preservation and stored at —80°C.

PB B cell subsets (naive, USM, DN, SM, CD27") were analyzed from all patients in this study and sort-
ed and subjected to Ig-RepSeq from 11 patients (Table 1). CSF lymphocytes from all patients were analyzed
by flow cytometry and either bulk sorted (» = 3: 51113a, 51314a, and 51814a) or when possible sorted as 4
(naive, USM, DN, SM/CD27" combined: n = 2, 56414a and 56514a) or 5 separate subsets (n = 6: 56914a,
57114a, 57414a, 57514a, 57714a, and 64215a).

Ig-RepSeq. Total RNA was extracted from sorted B cell subsets (RNeasy Micro Kit, Qiagen) and reverse
transcribed (iScript cDNA Synthesis Kit, Bio-Rad). PB and CSF cDNA was used for IgM-VH and IgG-VH
amplification by PCR (Advantage 2 PCR Kit, Clontech) using a pool of custom-designed IGHV1-7 family
forward primers and IgG- or IgM-specific reverse primers with IonXpress barcodes to uniquely tag each
subset/isotype prior to library prep (Table 2). PB samples were subjected to 30-35 cycles of PCR, and CSF
subsets were amplified 35-50 cycles in increments of 5 cycles until product was detected by agarose gel.
PCR-amplified product was purified using a 1.5% agarose gel with Sybr Safe and extracted (MiniElute Kit,
Qiagen). Gel-purified DNA was quantified (High Sensitivity DNA Kit and Bioanalyzer, Agilent Biotech-
nologies) and then diluted to 13.5-16 pM to create an equimolar DNA library. The DNA library underwent
emulsion PCR (Ion OneTouch2 Kit, Life Technologies) to bind and clonally expand DNA fragments onto
TonSphere beads (ISP) for sequencing. Enriched ISPs were quality control checked using a Qubit Fluoro-
meter and sequenced on the Ion PGM System (Life Technologies) using 318 v2 chips. Sequence files are
available in fastq format at NCBI (BioProject accession PRINA397295)

CSF and plasma cytokine/chemokine ELISAs. Concentrations of CXCL13, CXCL12, and BAFF were

https://doi.org/10.1172/jci.insight.92724 13
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measured in plasma and CSF using commercially available ELISA kits from R&D Systems, and concen-
trations of APRIL were determined using ELISA kits from eBioscience. All dilutions and sample mea-
surements were performed according to the manufacturer’s instructions. Optical density of each plate was
read at 450 nm within 30 minutes using a microplate reader. The quantitative results were then statistically
evaluated using a nonparametric ¢ test (Graphpad Prism).

MRI acquisition and analysis. MRI scans were acquired on a 3T Siemens scanner following a standardized
protocol that included 3D T1-weighted magnetization-prepared Gradient echo images (T1-MPRAGE), 3D
fluid-attenuated inversion recovery (FLAIR), and T2/PD images of the brain and T2-weighted and short
tau inversion recovery (STIR) images of the spinal cord. Brain MPRAGE and T1-weighted spinal cord
images were acquired after administration of gadopentetate dimeglumine. Readings were performed blind-
ed to the clinical and immunological data.

Statistics and immune repertoire analysis. Statistical analyses were performed using GraphPad Prism.
A 2-tailed ¢ test was used for linear measures and Fisher’s exact test for group comparisons; P values
of less than 0.05 were considered significant. P values of less than 0.05 were considered statistically
significant. Fastq sequence files were generated based on raw sequencing output files (BAM format)
retrieved from the IonTorrent PGM Sequencer. For all reads, IGHV and IGHJ usage, H-CDR3 amino
acid sequence, and numbers of SHM along the IGHV portion of each Ig-VH sequence were deter-
mined using a custom pipeline incorporating sequence alignments and MiXCR (48) (Note that the com-
piled bioinformatics pipeline is available for download; https://github.com/swuecho/Immune-rep-
ertoire-network). Clonally related IgM/G-VH sequences were clustered based on H-CDR3 similarity
(Hamming distance = 2; ref. 49) and usage of the same IGHV and IGHJ germline segments. Simplified
views displaying the overall number of clusters per B cell subset and numbers of clonal connections
(i.e., relationships) between subsets were visualized in Cytoscape version 3.3.0 (50). The goal of our
analysis was to obtain information regarding the presence of clonally related Ig-VH derived from differ-
ent B cell subsets in CSF and/or PB.

Study approval. All investigations were IRB approved (UCSF Committee on Human Research),
and all patients provided written informed consent. This study was conducted in accordance with the
Declaration of Helsinki.
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