Mechanisms of bile acid–induced (BA-induced) liver injury in cholestasis are controversial, limiting development of new therapies. We examined how BAs initiate liver injury using isolated liver cells from humans and mice and in-vivo mouse models. At pathophysiologic concentrations, BAs induced proinflammatory cytokine expression in mouse and human hepatocytes, but not in nonparenchymal cells or cholangiocytes. These hepatocyte-specific cytokines stimulated neutrophil chemotaxis. Inflammatory injury was mitigated in
Shi-Ying Cai, Xinshou Ouyang, Yonglin Chen, Carol J. Soroka, Juxian Wang, Albert Mennone, Yucheng Wang, Wajahat Z. Mehal, Dhanpat Jain, James L. Boyer
Usage data is cumulative from September 2023 through September 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 1,123 | 395 |
117 | 120 | |
Figure | 317 | 10 |
Table | 27 | 0 |
Supplemental data | 25 | 11 |
Citation downloads | 37 | 0 |
Totals | 1,646 | 536 |
Total Views | 2,182 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.