Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

AML-induced osteogenic differentiation in mesenchymal stromal cells supports leukemia growth
V. Lokesh Battula, Phuong M. Le, Jeffrey C. Sun, Khoa Nguyen, Bin Yuan, Ximin Zhou, Sonali Sonnylal, Teresa McQueen, Vivian Ruvolo, Keith A. Michel, Xiaoyang Ling, Rodrigo Jacamo, Elizabeth Shpall, Zhiqiang Wang, Arvind Rao, Gheath Al-Atrash, Marina Konopleva, R. Eric Davis, Melvyn A. Harrington, Catherine W. Cahill, Carlos Bueso-Ramos, Michael Andreeff
V. Lokesh Battula, Phuong M. Le, Jeffrey C. Sun, Khoa Nguyen, Bin Yuan, Ximin Zhou, Sonali Sonnylal, Teresa McQueen, Vivian Ruvolo, Keith A. Michel, Xiaoyang Ling, Rodrigo Jacamo, Elizabeth Shpall, Zhiqiang Wang, Arvind Rao, Gheath Al-Atrash, Marina Konopleva, R. Eric Davis, Melvyn A. Harrington, Catherine W. Cahill, Carlos Bueso-Ramos, Michael Andreeff
View: Text | PDF
Research Article Bone biology Stem cells

AML-induced osteogenic differentiation in mesenchymal stromal cells supports leukemia growth

  • Text
  • PDF
Abstract

Genotypic and phenotypic alterations in the bone marrow (BM) microenvironment, in particular in osteoprogenitor cells, have been shown to support leukemogenesis. However, it is unclear how leukemia cells alter the BM microenvironment to create a hospitable niche. Here, we report that acute myeloid leukemia (AML) cells, but not normal CD34+ or CD33+ cells, induce osteogenic differentiation in mesenchymal stromal cells (MSCs). In addition, AML cells inhibited adipogenic differentiation of MSCs. Mechanistic studies identified that AML-derived BMPs activate Smad1/5 signaling to induce osteogenic differentiation in MSCs. Gene expression array analysis revealed that AML cells induce connective tissue growth factor (CTGF) expression in BM-MSCs irrespective of AML type. Overexpression of CTGF in a transgenic mouse model greatly enhanced leukemia engraftment in vivo. Together, our data suggest that AML cells induce a preosteoblast-rich niche in the BM that in turn enhances AML expansion.

Authors

V. Lokesh Battula, Phuong M. Le, Jeffrey C. Sun, Khoa Nguyen, Bin Yuan, Ximin Zhou, Sonali Sonnylal, Teresa McQueen, Vivian Ruvolo, Keith A. Michel, Xiaoyang Ling, Rodrigo Jacamo, Elizabeth Shpall, Zhiqiang Wang, Arvind Rao, Gheath Al-Atrash, Marina Konopleva, R. Eric Davis, Melvyn A. Harrington, Catherine W. Cahill, Carlos Bueso-Ramos, Michael Andreeff

×

Usage data is cumulative from January 2025 through January 2026.

Usage JCI PMC
Text version 790 233
PDF 162 51
Figure 462 5
Supplemental data 62 9
Citation downloads 134 0
Totals 1,610 298
Total Views 1,908
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts