Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
ML372 blocks SMN ubiquitination and improves spinal muscular atrophy pathology in mice
Mahlet B. Abera, … , Juan J. Marugan, Barrington G. Burnett
Mahlet B. Abera, … , Juan J. Marugan, Barrington G. Burnett
Published November 17, 2016
Citation Information: JCI Insight. 2016;1(19):e88427. https://doi.org/10.1172/jci.insight.88427.
View: Text | PDF
Research Article Cell biology Therapeutics

ML372 blocks SMN ubiquitination and improves spinal muscular atrophy pathology in mice

  • Text
  • PDF
Abstract

Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease and one of the leading inherited causes of infant mortality. SMA results from insufficient levels of the survival motor neuron (SMN) protein, and studies in animal models of the disease have shown that increasing SMN protein levels ameliorates the disease phenotype. Our group previously identified and optimized a new series of small molecules, with good potency and toxicity profiles and reasonable pharmacokinetics, that were able to increase SMN protein levels in SMA patient–derived cells. We show here that ML372, a representative of this series, almost doubles the half-life of residual SMN protein expressed from the SMN2 locus by blocking its ubiquitination and subsequent degradation by the proteasome. ML372 increased SMN protein levels in muscle, spinal cord, and brain tissue of SMA mice. Importantly, ML372 treatment improved the righting reflex and extended survival of a severe mouse model of SMA. These results demonstrate that slowing SMN degradation by selectively inhibiting its ubiquitination can improve the motor phenotype and lifespan of SMA model mice.

Authors

Mahlet B. Abera, Jingbo Xiao, Jonathan Nofziger, Steve Titus, Noel Southall, Wei Zheng, Kasey E. Moritz, Marc Ferrer, Jonathan J. Cherry, Elliot J. Androphy, Amy Wang, Xin Xu, Christopher Austin, Kenneth H. Fischbeck, Juan J. Marugan, Barrington G. Burnett

×

Full Text PDF | Download (1019.68 KB)


Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts