Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
CNS-directed gene therapy for the treatment of neurologic and somatic mucopolysaccharidosis type II (Hunter syndrome)
Sandra Motas, … , Jesús Ruberte, Fatima Bosch
Sandra Motas, … , Jesús Ruberte, Fatima Bosch
Published June 16, 2016
Citation Information: JCI Insight. 2016;1(9):e86696. https://doi.org/10.1172/jci.insight.86696.
View: Text | PDF
Research Article Neuroscience Therapeutics

CNS-directed gene therapy for the treatment of neurologic and somatic mucopolysaccharidosis type II (Hunter syndrome)

  • Text
  • PDF
Abstract

Mucopolysaccharidosis type II (MPSII) is an X-linked lysosomal storage disease characterized by severe neurologic and somatic disease caused by deficiency of iduronate-2-sulfatase (IDS), an enzyme that catabolizes the glycosaminoglycans heparan and dermatan sulphate. Intravenous enzyme replacement therapy (ERT) currently constitutes the only approved therapeutic option for MPSII. However, the inability of recombinant IDS to efficiently cross the blood-brain barrier (BBB) limits ERT efficacy in treating neurological symptoms. Here, we report a gene therapy approach for MPSII through direct delivery of vectors to the CNS. Through a minimally invasive procedure, we administered adeno-associated virus vectors encoding IDS (AAV9-Ids) to the cerebrospinal fluid of MPSII mice with already established disease. Treated mice showed a significant increase in IDS activity throughout the encephalon, with full resolution of lysosomal storage lesions, reversal of lysosomal dysfunction, normalization of brain transcriptomic signature, and disappearance of neuroinflammation. Moreover, our vector also transduced the liver, providing a peripheral source of therapeutic protein that corrected storage pathology in visceral organs, with evidence of cross-correction of nontransduced organs by circulating enzyme. Importantly, AAV9-Ids-treated MPSII mice showed normalization of behavioral deficits and considerably prolonged survival. These results provide a strong proof of concept for the clinical translation of our approach for the treatment of Hunter syndrome patients with cognitive impairment.

Authors

Sandra Motas, Virginia Haurigot, Miguel Garcia, Sara Marcó, Albert Ribera, Carles Roca, Xavier Sánchez, Víctor Sánchez, Maria Molas, Joan Bertolin, Luca Maggioni, Xavier León, Jesús Ruberte, Fatima Bosch

×

Figure 4

Intra-CSF gene therapy with AAV9- Ids corrects astrocytosis in MPSII mice.

Options: View larger image (or click on image) Download as PowerPoint

						Intra-CSF gene therapy with AAV9-
						Ids
						 corrects astro...
Study of the effects of the treatment on astrocytosis at 6 months of age in the brains of healthy WT, untreated mucopolysaccharidosis type II (MPSII), or MPSII mice injected in the cerebrospinal fluid with either null vector (MPSII+AAV9-Null) or therapeutic vector (MPSII+AAV9-Ids). (A) Astrocytosis was evaluated through immunohistochemistry with anti-glial fibrillary acidic protein (anti-GFAP) antibody. Scale bar: 50 μm; 10 μm (insets). (B) The percentage of GFAP-positive area quantified in each brain region is represented in the histograms. Data are shown as mean ± SEM of 4–5 animals/group. **P < 0.01, ***P < 0.001, ****P < 0.0001 vs. MPSII+AAV9-Null (Dunnett’s test).

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts