Reproductive disorders can result from a defective action of the neuropeptide gonadotropin-releasing hormone (GnRH), the master regulator of reproduction. We have previously shown that selenoprotein T (SELENOT), a newly described thioredoxin-like selenoprotein highly expressed in endocrine and neuroendocrine cells, plays a role in hormone secretion and neuroprotection. However, whether SELENOT is involved in neuroendocrine regulation in vivo is totally unknown. We found that SELENOT deficiency in the brain impaired sexual behavior, leading to a decline in fertility in both male and female mice. Biochemical and histological analyses of the gonadotrope axis of these mice revealed a higher expression of GnRH, which is associated with circulating luteinizing hormone (LH) excess, and elevated steroid hormones in males and a polycystic ovary syndrome–like phenotype in females. In addition, SELENOT deficiency impaired LH pulse secretion in both male and female mice. These changes were reverted after administration of a GnRH antagonist. Together, our data demonstrate for the first time to our knowledge the role of a selenoprotein in the central control of sexual behavior and reproduction, and identify a redox effector of GnRH neuron activity impacting both male and female reproductive function.
Ben Yamine Mallouki, Loubna Boukhzar, Ludovic Dumont, Azénor Abgrall, Marjorie Gras, Agathe Prieur, David Alexandre, David Godefroy, Yves Tillet, Nathalie Rives, Luca Grumolato, Fatiha Chigr, Youssef Anouar