Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Developmental progression of respiratory dysfunction in a mouse model of Dravet syndrome
Brenda M. Milla, … , Monica L. Strain, Daniel K. Mulkey
Brenda M. Milla, … , Monica L. Strain, Daniel K. Mulkey
Published September 9, 2025
Citation Information: JCI Insight. 2025;10(20):e184231. https://doi.org/10.1172/jci.insight.184231.
View: Text | PDF
Research Article Cell biology Neuroscience

Developmental progression of respiratory dysfunction in a mouse model of Dravet syndrome

  • Text
  • PDF
Abstract

Dravet syndrome (DS) is an early-onset epilepsy caused by loss-of-function mutations in the SCN1A gene, which encodes Nav1.1 channels that preferentially regulate activity of inhibitory neurons early in development. DS is associated with a high incidence of sudden unexpected death in epilepsy (SUDEP) by a mechanism that may involve respiratory failure. Evidence also shows that loss of Scn1a impaired activity of neurons in the retrotrapezoid nucleus (RTN) that regulate breathing in response to CO2/H+, suggesting breathing problems precede seizures and serve as a biomarker of SUDEP. Consistent with this, we showed that Scn1a+/– mice exhibited a blunted ventilatory response to CO2/H+ prior to overt seizure activity that worsened with disease progression. Later in development, some Scn1a+/– mice also showed a blunted ventilatory response to hypoxia. Importantly, the severity of respiratory problems correlated with mortality. We also found that pharmacological activation of Nav1.1 rescued activity deficits of RTN neurons in Scn1a+/– mice. We conclude that disordered breathing may be an early biomarker of SUDEP in DS, and at the cellular level, loss of Scn1a disrupts RTN neurons by mechanisms involving disinhibition and pharmacological activation of Nav1.1 to reestablish inhibitory control of RTN neurons rescues activity deficits.

Authors

Brenda M. Milla, Eliandra N. da Silva, Cleyton R. Sobrinho, Monica L. Strain, Daniel K. Mulkey

×

Graphical abstract

Options: View larger image (or click on image)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts