Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Noncoding variation near UBE2E2 orchestrates cardiometabolic pathophenotypes through polygenic effectors
Yang Zhang, Natalie L. David, Tristan Pesaresi, Rosemary E. Andrews, G.V. Naveen Kumar, Hongyin Chen, Wanning Qiao, Jinzhao Yang, Kareena Patel, Tania Amorim, Ankit X. Sharma, Silvia Liu, Matthew L. Steinhauser
Yang Zhang, Natalie L. David, Tristan Pesaresi, Rosemary E. Andrews, G.V. Naveen Kumar, Hongyin Chen, Wanning Qiao, Jinzhao Yang, Kareena Patel, Tania Amorim, Ankit X. Sharma, Silvia Liu, Matthew L. Steinhauser
View: Text | PDF
Research Article Endocrinology Genetics

Noncoding variation near UBE2E2 orchestrates cardiometabolic pathophenotypes through polygenic effectors

  • Text
  • PDF
Abstract

Mechanisms underpinning signals from genome-wide association studies remain poorly understood, particularly for noncoding variation and for complex diseases such as type 2 diabetes mellitus (T2D) where pathogenic mechanisms in multiple different tissues may be disease driving. One approach is to study relevant endophenotypes, a strategy we applied to the UBE2E2 locus where noncoding single nucleotide variants (SNVs) are associated with both T2D and visceral adiposity (a pathologic endophenotype). We integrated CRISPR targeting of SNV-containing regions and unbiased CRISPR interference (CRISPRi) screening to establish candidate cis-regulatory regions, complemented by genetic loss of function in murine diet-induced obesity or ex vivo adipogenesis assays. Nomination of a single causal gene was complicated, however, because targeting of multiple genes near UBE2E2 attenuated adipogenesis in vitro; CRISPR excision of SNV-containing noncoding regions and a CRISPRi regulatory screen across the locus suggested concomitant regulation of UBE2E2, the more distant UBE2E1, and other neighborhood genes; and compound heterozygous loss of function of both Ube2e2 and Ube2e1 better replicated pathological adiposity and metabolic phenotypes compared with homozygous loss of either gene in isolation. This study advances a model whereby regulatory effects of noncoding variation not only extend beyond the nearest gene but may also drive complex diseases through polygenic regulatory effects.

Authors

Yang Zhang, Natalie L. David, Tristan Pesaresi, Rosemary E. Andrews, G.V. Naveen Kumar, Hongyin Chen, Wanning Qiao, Jinzhao Yang, Kareena Patel, Tania Amorim, Ankit X. Sharma, Silvia Liu, Matthew L. Steinhauser

×

Figure 2

Identification of multiple candidate causal genes in the topological neighborhood of UBE2E2.

Options: View larger image (or click on image) Download as PowerPoint
Identification of multiple candidate causal genes in the topological nei...
(A) UBE2E2 neighborhood gene map. (B) Heatmap showing relative changes in expression of neighborhood genes by qPCR during adipogenic differentiation of mesenchymal stem cells (MSC) in vitro. (C) Adipogenesis assay with shRNA knockdown of neighborhood genes normalized to sh-scramble control (dotted line at 1.0) with Ube2e2 knockdown shown as positive control. Each dot represents the mean of technical replicates for an individual biological replicate experiment (n = 5, except Nrld2a, which is n = 3). For each gene knockdown, significance was assessed by 1-sample t test relative to null expectation equal to scramble control value of 1: *P < 0.05; **P < 0.01; ***P < 0.005; ****P < 0.001. (D) CRISPR/Cas9 excision of ~200 bp SNV containing regions in cultured MSC. Expression of genes in the UBE2E2 topological neighborhood was assessed by qPCR, with each dot indicating mean of technical replicates for an independent biological replicate experiment. To merge different biological replicate experiments (n = 4), data were expressed relative to control and P values were calculated by 1-sample t test relative to expected null value = 1.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts