Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
MMP12-dependent myofibroblast formation contributes to nucleus pulposus fibrosis
Yi Sun, Wai-Kit Tam, Manyu Zhu, Qiuji Lu, Mengqi Yu, Yuching Hsu, Peng Chen, Peng Zhang, Minmin Lyu, Yongcan Huang, Zhaomin Zheng, Xintao Zhang, Victor Y. Leung
Yi Sun, Wai-Kit Tam, Manyu Zhu, Qiuji Lu, Mengqi Yu, Yuching Hsu, Peng Chen, Peng Zhang, Minmin Lyu, Yongcan Huang, Zhaomin Zheng, Xintao Zhang, Victor Y. Leung
View: Text | PDF
Research Article Bone biology Cell biology

MMP12-dependent myofibroblast formation contributes to nucleus pulposus fibrosis

  • Text
  • PDF
Abstract

Intervertebral disc degeneration (IDD) is associated with low back pain, a leading cause of disability worldwide. Fibrosis of nucleus pulposus (NP) is a principal component of IDD, featuring an accumulation of myofibroblast-like cells. Previous study indicates that matrix metalloproteinase 12 (MMP12) expression is upregulated in IDD, but its role remains largely unexplored. We here showed that TGF-β1 could promote myofibroblast-like differentiation of human NP cells along with an induction of MMP12 expression. Intriguingly, MMP12 knockdown not only ameliorated the myofibroblastic phenotype but also increased chondrogenic marker expression. Transcriptome analysis revealed that the MMP12-mediated acquisition of myofibroblast phenotype was coupled to processes related to fibroblast activation and osteogenesis and to pathways mediated by MAPK and Wnt signaling. Injury induced mouse IDD showed NP fibrosis with marked increase of collagen deposition and αSMA-expressing cells. In contrast, MMP12-KO mice exhibited largely reduced collagen I and III but increased collagen II and aggrecan deposition, indicating an inhibition of NP fibrosis along with an enhanced cartilaginous matrix remodeling. Consistently, an increase of SOX9+ and CNMD+ but decrease of αSMA+ NP cells was found in the KO. Altogether, our findings suggest a pivotal role of MMP12 in myofibroblast generation, thereby regulating NP fibrosis in IDD.

Authors

Yi Sun, Wai-Kit Tam, Manyu Zhu, Qiuji Lu, Mengqi Yu, Yuching Hsu, Peng Chen, Peng Zhang, Minmin Lyu, Yongcan Huang, Zhaomin Zheng, Xintao Zhang, Victor Y. Leung

×

Figure 4

Pathway regulation by MMP12 in human dNPC.

Options: View larger image (or click on image) Download as PowerPoint
Pathway regulation by MMP12 in human dNPC.
(A) Gene expression plot of T...
(A) Gene expression plot of TGF-β1–treated dNPC (n = 3 biologic replicates) with or without MMP12 knockdown. The x axis shows fold changes in cells with scramble transfection with TGF-β1 treatment; the y axis shows fold changes in TGF-β1–treated cells with siMMP12 transfection. Differentially expressed genes (DEGs) with over 2-fold changes of expression at P ≤ 0.05 are colored in yellow (upregulated) or purple (downregulated). (B) Gene Ontology and KEGG pathway analysis of the DEGs: molecular function (upper); biological processes (middle); KEGG (lower). (C) Scatter plot for scaled expression of the previously defined biomarkers of various NPC subtypes. Genes between the dot lines (fold changes < 2) are considered nonsignificant. Genes names are provided in Supplemental Table 1.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts