Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Neurofilament accumulation disrupts autophagy in giant axonal neuropathy
Jean-Michel Paumier, James Zewe, Chiranjit Panja, Melissa R. Pergande, Meghana Venkatesan, Eitan Israeli, Shikha Prasad, Natasha Snider, Jeffrey N. Savas, Puneet Opal
Jean-Michel Paumier, James Zewe, Chiranjit Panja, Melissa R. Pergande, Meghana Venkatesan, Eitan Israeli, Shikha Prasad, Natasha Snider, Jeffrey N. Savas, Puneet Opal
View: Text | PDF
Research Article Cell biology Neuroscience

Neurofilament accumulation disrupts autophagy in giant axonal neuropathy

  • Text
  • PDF
Abstract

Neurofilament accumulation is associated with many neurodegenerative diseases, but it is the primary pathology in giant axonal neuropathy (GAN). This childhood-onset autosomal recessive disease is caused by loss-of-function mutations in gigaxonin, the E3 adaptor protein that enables neurofilament degradation. Using a combination of genetic and RNA interference approaches, we found that dorsal root ganglia from mice lacking gigaxonin have impaired autophagy and lysosomal degradation through 2 mechanisms. First, neurofilament accumulations interfere with the distribution of autophagic organelles, impairing their maturation and fusion with lysosomes. Second, the accumulations attract the chaperone 14-3-3, which is responsible for the proper localization of the key autophagy regulator transcription factor EB (TFEB). We propose that this dual disruption of autophagy contributes to the pathogenesis of other neurodegenerative diseases involving neurofilament accumulations.

Authors

Jean-Michel Paumier, James Zewe, Chiranjit Panja, Melissa R. Pergande, Meghana Venkatesan, Eitan Israeli, Shikha Prasad, Natasha Snider, Jeffrey N. Savas, Puneet Opal

×

Figure 1

Dorsal root ganglia (DRG) neurons model the hallmark pathology of giant axonal neuropathy (GAN).

Options: View larger image (or click on image) Download as PowerPoint
Dorsal root ganglia (DRG) neurons model the hallmark pathology of giant ...
(A) Representative fluorescence microscopy images of DRG neurons from WT and Gan-null mice stained for neurofilament light (NFL) after 2, 4, and 7 days in vitro (DIV). Arrowheads denote NFL aggregation in the soma of Gan-null DRG neurons. Note that NFL aggregates are already present after 2 DIV. (B) The GAN phenotype can be recapitulated by lentiviral delivery of shRNA targeting the Gan gene. Scale bars: 30 μm (A and B). All insets are shown at ×3 magnification. After 12 DIV, axonal fragmentation, a sign of neurodegeneration, occurs in Gan-silenced DRG neurons, as denoted by arrowheads; large aggregate shown in zoom. (C) Quantification of axonal fragmentation was accomplished using Fiji’s measurement tool, reported here as the means of 3 independent experiments ± SEM. ***P < 0.001 by 2-tailed, unpaired Student’s t test.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts