The viral kinetics of documented SARS-CoV-2 infections exhibit a high degree of interindividual variability. We identified 6 distinct viral shedding patterns, which differed according to peak viral load, duration, expansion rate, and clearance rate, by clustering data from 768 infections in the National Basketball Association cohort. Omicron variant infections in previously vaccinated individuals generally led to lower cumulative shedding levels of SARS-CoV-2 than other scenarios. We then developed a mechanistic mathematical model that recapitulated 1,510 observed viral trajectories, including viral rebound and cases of reinfection. Lower peak viral loads were explained by a more rapid and sustained transition of susceptible cells to a refractory state during infection as well as by an earlier and more potent late, cytolytic immune response. Our results suggest that viral elimination occurs more rapidly during Omicron infection, following vaccination, and following reinfection due to enhanced innate and acquired immune responses. Because viral load has been linked with COVID-19 severity and transmission risk, our model provides a framework for understanding the wide range of observed SARS-CoV-2 infection outcomes.
Katherine Owens, Shadisadat Esmaeili, Joshua T. Schiffer